

H.264 Base/Main/High Profile
Encoder on DM365/DM368

User’s Guide

Literature Number: SPRUEU9C
August 2010

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Communications and www.ti.com/communications
 Telecom
DSP dsp.ti.com Computers and www.ti.com/computers
 Peripherals
Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps
Interface interface.ti.com Energy www.ti.com/energy
Logic logic.ti.com Industrial www.ti.com/industrial
Power Mgmt power.ti.com Medical www.ti.com/medical
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
 Defense
RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video
Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

www.ti.com/audio
www.ti.com/automotive
http://www.dlp.com/
www.ti.com/communications
www.ti.com/computers
http://www.ti.com/clocks
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
http://www.ti-rfid.com/
www.ti.com/space-avionics-defense
http://www.ti.com/lprf
www.ti.com/video
www.ti.com/wireless-apps

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) H.264 Base/Main/High Profile Encoder implementation on the
DM365/DM368 platform. It also provides a detailed Application
Programming Interface (API) reference and information on the sample
application that accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) and IRES standards. XDM and IRES are extensions of
eXpressDSP Algorithm Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI’s codecs with other software to build a multimedia system based on
the DM365/DM368 platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 – Introduction, provides a brief introduction to the XDAIS
and XDM standards, Frame work Components, and software
architecture. It also provides an overview of the codec and lists its
supported features.

 Chapter 2 – Installation Overview, describes how to install, build,
and run the codec.

 Chapter 3 – Sample Usage, describes the sample usage of the
codec.

 Chapter 4 – API Reference, describes the data structures and
interface functions used in the codec.

 Appendix A – Time-Stamp Insertion, describes insertion of frame
time-stamp through the Supplemental Enhancement Information
(SEI) Picture Timing message.

Read This First

iv

 Appendix B – Error Description, provides a list of error
descriptions.

 Appendix C – VICP buffer usage by codec, provides details of
how VICP buffers are used by codec.

 Appendix D – ARM926 TCM buffer usage by codec, provides
details of using ARM926 TCM buffer by codec.

 Appendix E - Simple Two-pass Encoding Sample Usage,
explains how multi-pass encoding can be used to improve the quality
of the H264 encoded video

 Appendix F – Revision History, highlights the changes made to the
SPRUEU9A codec specific user guide to make it SPRUEU9B.

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these TI documents,
visit the Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
defines a set of requirements for DSP algorithms that, if followed,
allow system integrators to quickly assemble production-quality
systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (SPRU360)
describes all the APIs that are defined by the TMS320 DSP
Algorithm Interoperability Standard (also known as XDAIS)
specification.

 Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5) provides an overview of the IRES
interface, along with some concrete resource types and resource
managers that illustrate the definition, management and use of new
types of resources.

Related Documentation

You can use the following documents to supplement this user guide:

 ISO/IEC 14496-10:2005 (E) Rec. H.264 (E) ITU-T Recommendation

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations
Abbreviation Description

ASO Arbitrary Slice Ordering

AVC Advanced Video Coding

http://www.ti.com/

Read This First

v

Abbreviation Description

BIOS TI’s simple RTOS for DSPs

CAVLC Context Adaptive Variable Length Coding

CABAC Context Adaptive Binary Arithmetic Coding

D1 720x480 or 720x576 resolutions in
progressive scan

DCT Discrete Cosine Transform

DDR Double Data Rate

DMA Direct Memory Access

FC Framework components

FMO Flexible Macro-block Ordering

HD 720 or 720p 1280x720 resolution in progressive scan

HDTV High Definition Television

HDVICP High Definition Video and Imaging Co-
processor sub-system

IDR Instantaneous Decoding Refresh

ITU-T International Telecommunication Union

JM Joint Menu

JVT Joint Video Team

MB Macro Block

MBAFF Macro Block Adaptive Field Frame

MJCP MPEG JPEG Co-Processor

MPEG Motion Pictures Expert Group

MV Motion Vector

NAL Network Adaptation Layer

NTSC National Television Standards Committee

PDM Parallel Debug Manager

PicAFF Picture Adaptive Field Frame

PMP Portable Media Player

PPS Picture Parameter Set

Read This First

vi

Abbreviation Description

PRC Perceptual Rate Control

RTOS Real Time Operating System

RMAN Resource Manager

SEI Supplemental Enhancement Information

SPS Sequence Parameter Set

VGA Video Graphics Array

VICP Video and Imaging Co-Processor

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

YUV Color space in luminance and
chrominance form

ROI Region Of Interest

STP Simple Two Pass

Note:

MJCP and VICP refer to the same hardware co-processor blocks.

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name
(H.264 Base/Main/High Profile Encoder on DM365/DM368) and version
number. The version number of the codec is included in the Title of the
Release Notes that accompanies this codec.

Trademarks

Code Composer Studio, DSP/BIOS, eXpressDSP, TMS320,
TMS320C64x, TMS320C6000, TMS320DM644x, and TMS320C64x+ are
trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

vii

Contents

Read This First .. iii

About This Manual ...iii
Intended Audience ...iii
How to Use This Manual ..iii
Related Documentation From Texas Instruments... iv
Related Documentation... iv
Abbreviations .. iv
Text Conventions .. vi
Product Support .. vi
Trademarks ... vi

Contents.. vii
Figures ... ix
Tables... xi
Introduction ...1-1

1.1 Software Architecture ..1-2
1.2 Overview of XDAIS, XDM, and Framework Component Tools1-2

1.2.1 XDAIS Overview ..1-2
1.2.2 XDM Overview ...1-3
1.2.3 Framework Component..1-4

1.3 Overview of H.264 Base/Main/High Profile Encoder...1-7
1.4 Supported Services and Features...1-10
1.5 Comparison between version 01.10.00.xx with new version 02.00.00.xx

(Platinum Encoder)..1-11
Installation Overview ..2-1

2.1 System Requirements for Linux ..2-2
2.1.1 Hardware..2-2
2.1.2 Software ...2-2

2.2 Installing the Component for Linux..2-2
2.3 Building and Running the Sample Test Application on Linux............................2-4
2.4 Configuration Files ..2-4

2.4.1 Generic Configuration File ...2-5
2.4.2 Encoder Configuration File...2-6
2.4.3 Encoder Sample Base Param Setting ...2-8

2.5 Standards Conformance and User-Defined Inputs ...2-8
2.6 Uninstalling the Component ..2-9

Sample Usage..3-1
3.1 Overview of the Test Application...3-2

3.1.1 Parameter Setup ..3-3
3.1.2 Algorithm Instance Creation and Initialization..3-3
3.1.3 Process Call ...3-4
3.1.4 Algorithm Instance Deletion ...3-5

3.2 Handshaking Between Application and Algorithm...3-6
3.2.1 Resource Level Interaction ..3-6
3.2.2 Handshaking Between Application and Algorithms ...3-7

viii

3.3 Cache Management by Application...3-9
3.3.1 Cache Usage By Codec Algorithm ..3-9
3.3.2 Cache and Memory Related Call Back Functions for Linux3-9

3.4 Sample Test Application..3-11
API Reference..4-1

4.1 Symbolic Constants and Enumerated Data Types..4-2
4.1.1 Common XDM Symbolic Constants and Enumerated Data Types4-2
4.1.2 H264 Encoder Symbolic Constants and Enumerated Data Types....................4-7
4.1.3 H264 Encoder Error code Enumerated Data Types ..4-7

4.2 Data Structures ...4-22
4.2.1 Common XDM Data Structures..4-22
4.2.2 H.264 Encoder Data Structures ...4-37

4.3 H.264 Encoder ROI specific Data Structures and Enumerations4-50
4.4 H264 Encoder Two Pass Encoder data structure ...4-53
4.5 H.264 Encoder Low latency specific Data Structures and Enumerations4-55

4.5.1 Structures ...4-55
4.5.2 Constant ...4-56
4.5.3 Typdef ..4-56
4.5.4 Enum..4-57

4.6 Interface Functions..4-59
4.6.1 Creation APIs ...4-60
4.6.2 Initialization API..4-62
4.6.3 Control API ...4-63
4.6.4 Data Processing API ..4-65
4.6.5 Termination API ...4-68

Time-Stamp Insertion .. A-1
Error Description.. B-1
VICP Buffer Usage By Codec.. C-1
ARM926 TCM Buffer Usage By Codec ... D-1
Simple Two-pass Encoding Sample Usage... E-1

E.1 Example Usage: ... E-4
Revision History..F-1

ix

Figures

Figure 1-1. Software Architecture..1-2
Figure 1-2. Framework Component Interfacing Structure. ...1-5
Figure 1-3. IRES Interface Definition and Function-calling Sequence.......................1-6
Figure 1-4. Block Diagram of H.264 Encoder. ..1-9
Figure 2-5. Component Directory Structure for Linux...2-3
Figure 3-1. Test Application Sample Implementation..3-2
Figure 3-2. Process Call with Host Release..3-4
Figure 3-3. Resource Level Interaction. ..3-6
Figure 3-4. Interaction Between Application and Codec...3-7
Figure 3-5. Interrupt Between Codec and Application. ...3-8
Figure C-1. VICP Buffers Managed By FC. .. C-2

x

This page is intentionally left blank

xi

Tables

Table 1-1. List of Abbreviations... iv
Table 2-2. Component Directories for Linux. ...2-3
Table 3-1. process () Implementation..3-11
Table 4-1. List of Enumerated Data Types..4-2

xii

This page is intentionally left blank

1-1

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS, XDM, and DM365
software architecture. It also provides an overview of TI’s implementation
of the H.264 Base/Main/High Profile Encoder on the DM365/DM368
platform and its supported features.

Topic Page

1.1 Software Architecture 1-2

1.2 Overview of XDAIS, XDM, and Framework Component Tools 1-2

1.3 Overview of H.264 Base/Main/High Profile Encoder 1-7

1.4 Supported Services and Features 1-10

1.5 Comparison between version 01.10.00.xx with new version
02.00.00.xx (Platinum Encoder)

1-11

Introduction

1-2

1.1 Software Architecture

DM365/DM368 codec provides XDM compliant API to the application for
easy integration and management. The details of the interface are provided
in the subsequent sections.

DM365/DM368 is a digital multi-media system on-chip primarily used for
video security, video conferencing, PMP and other related application.

DM365/DM368 codec are OS agonistic and interacts with the kernel
through the Framework Component (FC) APIs. FC acts as a software
interface between the OS and the codec. FC manages resources and
memory by interacting with kernel through predefined APIs.

Following diagram shows the software architecture.

Figure 1-1. Software Architecture.

1.2 Overview of XDAIS, XDM, and Framework Component Tools

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS). IRES is a TMS320 DSP Algorithm
Standard (xDAIS) interface for management and utilization of special
resource types such as hardware accelerators, certain types of memory
and DMA. RMAN is a generic Resource Manager that manages software
component’s logical resources based on their IRES interface configuration.
Both IRES and RMAN are Framework Component modules.

1.2.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This

Linux Kernel

Application

DM365 Codecs

Framework Component

Linux User
 Space

Linux Kernel
Space

CMEM APIs EDMA APIs

CMEM

CSL iMX

SYNC APIs

IRQ driver EDMA driver

Introduction

1-3

interaction allows the client application to allocate memory for the algorithm
and share memory between algorithms. It also allows the memory to be
moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory
requirements to the client application. The algInit() API allows the
algorithm to initialize the memory allocated by the client application. The
algFree() API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algActivate() API provides a notification to the
algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algDeactivate() API prior
to reusing any of the instance’s scratch memory.

The IALG interface also defines two more optional APIs algNumAlloc()
and algMoved(). For more details on these APIs, see TMS320 DSP
Algorithm Standard API Reference (SPRU360).

1.2.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs
(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control() API replaces the algControl() API defined as part of the
IALG interface. The process() API does the basic processing
(encode/decode) of data. This API represents a blocking call for the
encoder and the decoder, that is, with the usage of this API, the control is
returned to the calling application only after encode or decode of one unit
(frame) is completed. Since in case of DM365/DM368, the main encode or
decode is carried out by the hardware accelerators, the host processor

Introduction

1-4

from which the process() call is made can be used by the application in
parallel with the encode or the decode operation. To enable this, the
framework provides flexibility to the application to pend the encoder task
when the frame level computation is happening on coprocessor.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

1.2.3 Framework Component

As discussed earlier, Framework Component acts like a middle layer
between the codec and OS and also serves as a resource manager. The
following block diagram shows the FC components and their interfacing
structure.

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Client Application

Introduction

1-5

Figure 1-2. Framework Component Interfacing Structure.

Each component is explained in detail in the following sections.

1.2.3.1 IRES and RMAN

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES defines standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an
algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that
are requested. The framework calls the IRES interface functions, in
addition to the IALG functions, to perform IRES resource initialization,
activation and deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative preemption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

 IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

 RMAN - Generic IRES-based resource manager, which manages and
grants concrete IRES resources to algorithms and applications. RMAN
uses a new standard interface, the IRESMAN, to support run-time
registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application

FC

FCtools

 ires

vicpsync vicp rman hdvicpsync EDMA3 memutils

Introduction

1-6

framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by the
concrete IRES resource interface.

IRES interface definition and function-calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

Figure 1-3. IRES Interface Definition and Function-calling Sequence.

In DM365/DM368, FC manages multiple resources for smooth interaction with
other algorithms and application. The resources and the utilities provided by
FC are listed in this section.

1.2.3.2 HDVICP

The IRES HDVICP Resource Interface, IRES_HDVICP, allows algorithms
to request and receive handles representing Hardware Accelerator
resource, HDVICP, on supported hardware platforms. Algorithms can
request and acquire one of the co-processors using a single IRES request
descriptor. IRES_HDVICP is an example of a very simple resource type
definition, which operates at the granularity of the entire processor and
does not publish any details about the resource that is being acquired other
than the ‘id’ of the processor. It leaves it up to the algorithm to manage
internals of the resource based on the ID.

1.2.3.3 EDMA3

The IRES EDMA3 Resource Interface, IRES_EDMA3CHAN, allows
algorithms to request and receive handles representing EDMA3 resources
associated with a single EDMA3 channel. This is a very low-level resource
definition.

Introduction

1-7

Note:

The existing xDAIS IDMA3 and IDMA2 interfaces can be used to request
logical DMA channels, but the IRES EDMA3CHAN interface provides
the ability to request resources with finer precision than with IDMA2 or
IDMA3.

1.2.3.4 VICP

VICP resource manager provides access to its VICP compute engine and
its buffer. The compute engines are MJCP, NSF, IMX0 and IMX1. In
addition to this, the VICP buffers are also assumed as resources and can
be requested as either named buffers (for MPEG and JPEG codec
operation) of generic scratch buffer (for H.264 codec operation).

1.2.3.5 HDVICP Sync

Synchronization is necessary in a coprocessor system. HDVICP sync
provides framework support for synchronization between codec and HDVICP
coprocessor usage. This module is used by frameworks or applications, which
have xDIAS algorithms that use HDVICP hardware accelarators.

1.2.3.6 Memutils

This is for generic APIs to perform cache and memory related operations.

 cacheInv – Invalidates a range of cache

 cacheWb – Writes back a range of cache

 cacheWbInv – Writes back and invalidate cache

 getPhysicalAddr – Obtains physical (hardware specific) address

1.2.3.7 TCM

ARM TCM resource manager provides access to request ARM926 TCM
memory. ARM926 in DM365/DM368 has 32K TCM, which can be allocated
to codec/algorithm on request. The allocation is in granularity of 1/2K
blocks, which can be used as scratch memory by the codec/algorithm.

1.3 Overview of H.264 Base/Main/High Profile Encoder

H.264 (from ITU-T, also called as H.264/AVC) is a popular video coding
algorithm enabling high quality multimedia services on a limited bandwidth
network. H.264 standard defines several profiles and levels that specify
restrictions on the bit stream and hence limits the capabilities needed to
decode the bit streams. Each profile specifies a subset of algorithmic
features and limits that all decoders conforming to that profile may support.
Each level specifies a set of limits on the values that may be used by the
syntax elements in the profile.

Introduction

1-8

Some important H.264 profiles and their special features are (These are
feature as defined by H.264 standard, few of them may not be part of
DM365/DM368 H.264 implementation):

 Baseline Profile:

o Only I and P type slices are present

o Only frame mode (progressive) picture types are present

o Only CAVLC is supported

o ASO/FMO and redundant slices for error concealment is supported

 High Profile:

o Only I, P, and B type slices are present

o Frame and field picture modes (in progressive and interlaced modes)
picture types are present

o Both CAVLC and CABAC are supported

o ASO is not supported

o Transform 8x8 is supported

o Sequence scaling list is supported

o B frames and weighted prediction.

The input to the encoder is a YUV sequence, which can be of format 420
with the chroma components interleaved in little endian. The output of the
encoder is an H.264 encoded bit-stream in the byte-stream syntax. The
byte-stream consists of a sequence of byte-stream NAL unit syntax
structures. Each byte-stream NAL unit syntax structure contains one start
code prefix of size four bytes and value 0x00000001, followed by one NAL
unit syntax structure. The encoded frame data is a group of slices, each is
encapsulated in NAL units. The slice consists of the following:

 Intra coded data: Spatial prediction mode and prediction error data,
subjected to DCT and later quantized.

 Inter coded data: Motion information and residual error data
(differential data between two frames), subjected to DCT and later
quantized.

The first frame is called Instantaneous Decode Refresh (IDR) picture
frame. The decoder at the receiving end reconstructs the frame by spatial
intra-prediction specified by the mode and by adding the prediction error.
The subsequent frames may be intra or inter coded.

In case of inter coding, the decoder reconstructs the bit-stream by adding
the residual error data to the previously decoded image, at the location
specified by the motion information. This process is repeated until the
entire bit-stream is decoded.

In motion estimation, the encoder searches for the best match in the
available reference frame(s). After quantization, contents of some blocks
become zero. H.264 Encoder tracks this information and passes the
information of coded 4x4 blocks to inverse transform so that it can skip
computation for those blocks that contain all zero co-efficients and are not
coded.

Introduction

1-9

H.264 Encoder defines in-loop filtering to avoid blocks across the 4x4 block
boundaries. It is the second most computational task of H.264 encoding
process after motion estimation. In-loop filtering is applied on all 4x4 edges
as a post-process and the operations depend upon the edge strength of
the particular edge.

H.264 Encoder applies entropy coding methods to use context based
adaptivity, which in turn improves the coding performance. All the macro
blocks, which belong to a slice, must be encoded in a raster scan order.
Baseline profile uses the Context Adaptive Variable Length Coding
(CAVLC). CAVLC is the stage where transformed and quantized
coefficients are entropy coded using context adaptive table switching
across different symbols. The syntax defined by the H.264 Encoder stores
the information at 4x4 block level.

The following figure depicts the working of the encoder.

Figure 1-4. Block Diagram of H.264 Encoder.

From this point onwards, all references to H.264 Encoder mean H.264
Base/Main/High Profile Encoder only.

Entropy
Coding

Coder
Control

Transform /
Scal / Quant

Deblocking
Filter

Reconstructed
Picture

Intra-frame
Prediction

Motion-
Compensation

Motion-
Estimation

Decoder Scaling and Inv.
Transform

Control
 Data

 Quant
Transf coeffs

Output
Picture

Motion
Data

Input
Picture

Introduction

1-10

1.4 Supported Services and Features

This user guide accompanies TI’s implementation of H.264 Encoder on the
DM365/DM368 platform.

This version of the codec has the following supported features of the
standard:

 eXpressDSP Digital Media (XDM1.0 IVIDENC1) interface compliant

 Compliant with H.264 High Profile up to level 5.0

 Supports resolutions up to 2048x2048

 Supports YUV420 semi planer input format for the frames

 Supports progressive and interlaced encoding

 Generates bit-stream compliant with H.264 standard

 Supports CAVLC and CABAC encoding

 Supports sequence scaling matrix

 Supports transform 8x8 and transform 4x4

 Supports frame based encoding with frame size being multiples of 2

 Supports rate control (CBR and VBR)

 Supports Insertion of Buffering Period and Picture Timing
Supplemental Enhancement Information (SEI) and Video Usability
Information (VUI)

 Supports Unrestricted Motion Vectors (UMV)

 Supports Half Pel and Quarter Pel Interpolation for motion estimation

 Supports following Smart Codec features:

o Simple Two Pass (STP) Encoding

o Region of Interest (ROI)

 Supports Low latency feature

o Can be configured to provide output at NAL granularity or after entire
frame is encoded.

o Supports encoded output in NAL stream or Bytes stream format

DM365/DM368 H.264 encoder can be configured in two modes:

 Platinum mode, which gives 1080P@30fps performance in DM368 –
432 Mhz device

 Version 1.1 backward compatible mode which gives performance of
720P@30fps on DM365/DM368 - 300 MHz

This version of the encoder does not support the following features as per
the Baseline Profile feature set:

 Error Resilience features such as ASO/FMO and redundant slices

Introduction

1-11

 Adaptive Reference Picture Marking

 Reference Picture List Reordering

1.5 Comparison between version 01.10.00.xx with new version 02.00.00.xx
(Platinum Encoder)

Version 02.00.00.xx is a new enhanced codec version with 1.5x better
performance than earlier version without affecting quality. Few of the
enhancements are listed below:

 Achieves 1080P@30fps on DM368.

 More feature rich codecs which includes

• Smart codec technology

• Low latency API support

Version 02.00.00.xx also supports version 1.1 standard mode as a
backward compatible option. This can be enabled by setting
encodingPreset = XDM_USER_DEFINED and encQuality = 0. It
enables application that needs low-resolution encoding, lesser EDMA
channels or some specific tools like perceptual rate control.

Feature Version 1.1 - Gen 1 Version 2.0 - Platinum

Resolution Min – 128 x 96
Max – 2k x 2k

Min – 320 x 128
Max – Current (2k x 2k)

Performance 720P@30fps on DM365/DM368 1080P@30fps on DM368

EDMA channels 37 46

Support for Ver
1.1 – Gen1

NA YES

Introduction

1-12

This page is intentionally left blank

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information on
building and running the sample test application.

Topic Page

2.1 System Requirements for Linux 2-2

2.2 Installing the Component for Linux 2-2

2.3 Building and Running the Sample Test Application on Linux 2-4

2.4 Configuration Files 2-4

2.5 Standards Conformance and User-Defined Inputs 2-8

2.6 Uninstalling the Component 2-9

Installation Overview

2-2

2.1 System Requirements for Linux

This section describes the hardware and software requirements for the
normal functioning of the codec in MV Linux OS. For details about the
version of the tools and software, see Release Note

2.1.1 Hardware

 DM365/DM368 EVM (Set the bits 2 and 3 of switch SW4 to low(0)
position and Set the bits 4 and 5 of switch SW5 to high(1) position)

 RS232 cable and network cable

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

 Build Environment: This project is built using Linux with MVL ARM
tool chain.

 ARM Tool Chain: This project is compiled and linked using MVL ARM
tool chain.

2.2 Installing the Component for Linux

The codec component is released as a compressed archive. To install the
codec, extract the contents of the tar file onto your local hard disk. The tar
file extraction creates a directory called
dm365_h264enc_xx_xx_xx_xx_production. Figure 2-5 shows the sub-
directories created in this directory.

Note:

xx_xx_xx_xx in the directory name is the version of the codec. For
example, If the version of the codec is 02.00.01.00, then the directory
created on extraction of tar file is
dm365_h264enc_02_00_01_00_production.

Installation Overview

2-3

Figure 2-5. Component Directory Structure for Linux.

Table 2-2 provides a description of the sub-directories created in the
dm365_h264enc_xx_xx_xx_xx_production directory.

Table 2-2. Component Directories for Linux.
Sub-Directory Description

\package Contains files related while building the package

\packages\ti\sdo\codecs\h264enc\lib Contains the codec library files on host

\packages\ti\sdo\codecs\h264enc\docs Contains user guide, datasheet, and release notes

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\build\arm926

Contains the makefile to built sample test application

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\build\arm926\cmd

Contains a template (.xdt) file to used to generate linker
command file

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\build\arm926\map

Contains the memory map generated on compilation of the
code

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\src

Contains application C files

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\inc

Contains header files needed for the application code

Installation Overview

2-4

Sub-Directory Description

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\input

Contains input test vectors

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\output

Contains output generated by the codec

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\reference

Contains read-only reference output to be used for verifying
against codec output

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\config

Contains configuration parameter files

2.3 Building and Running the Sample Test Application on Linux

To build the sample test application in linux environment, follow these
steps

1) Verify that dma library h264v_ti_dma_dm365.a exists in the
packages\ti\sdo\codecs\h264enc\lib.

2) Verify that codec object library library h264venc_ti_arm926.a exists in
the \packages\ti\sdo\codecs\h264enc\lib.

3) Ensure that you have installed the LSP, Montavista arm tool chain,
XDC, Framework Components releases with version numbers that are
mentioned in the release notes.

4) In the folder \packages\ti\sdo\codecs\h264enc\client\build\arm926,
change the paths in the file rules.make according to your setup.

5) Open the command prompt at the sub-directory
\packages\ti\sdo\codecs\h264enc\client\build\arm926 and type the
command make. This generates an executable file h264venc-r in the
same directory.

To run the executable generated from the above steps:

1) Load the kernel modules by typing the command ./loadmodules.sh,
which initializes the CMEM pools.

2) Now branch to the directory where the executable is present and type
./h264venc-r in the command window to run.

2.4 Configuration Files

This codec is shipped along with:

 Generic configuration file (testvecs.cfg) – list of configuration files for
running the codec on sample test application.

 Encoder configuration file (testparams.cfg) – specifies the
configuration parameters used by the test application to configure the
Encoder.

Installation Overview

2-5

2.4.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The testvecs.cfg file is
available in the
\packages\ti\sdo\codecs\h264enc\apps\client\test\testvecs\config sub-
directory.

The format of the testvecs.cfg file is:

X
config
input
output/reference
recon

where:

 X may be set as:

o 1 - for compliance checking, no output file is created

o 0 - for writing the output to the output file

 config is the Encoder configuration file. For details, see Section 2.4.2.

 input is the input file name (use complete path).

 output/reference is the output file name (if X is 0) or reference file
name (if X is 1) (use complete path).

 recon is reconstructed YUV output file name (use complete path).

Installation Overview

2-6

A sample testvecs.cfg file is as shown:

For output dump mode:
0
..\..\..\test\testvecs\config\testparams.cfg
..\..\..\test\testvecs\input\input.yuv
..\..\..\test\testvecs\output\output.264
..\..\..\test\testvecs\output\recon.yuv

For reference bit-stream compliance test mode:
1
..\..\..\test\testvecs\config\testparams.cfg
..\..\..\test\testvecs\input\input.yuv
..\..\..\test\testvecs\reference\reference.264
..\..\..\test\testvecs\output\recon.yuv

2.4.2 Encoder Configuration File

The encoder configuration file, testparams.cfg contains the configuration
parameters required for the encoder. The testparams.cfg file is available in
the \client\test\testvecs\config sub-directory.

A sample Testparams.cfg file is as shown:
Config File Format is as follows
<ParameterName> = <ParameterValue> # Comment

Parameters

ImageWidth = 1280 # Image width in Pels, must be multiple of 16
ImageHeight = 720 # Image height in Pels, must be multiple of 16
FrameRate = 30000 # Frame Rate per second*1000(1-120)
BitRate = 4000000 # Bitrate(bps) #if ZERO=>> RC is OFF
ChromaFormat = 9 # 9 => XDM_YUV_420P
InterlacedVideo = 0 # 0: Progressive, 1 :Interlaced
TimerScale = 60. # Timer Resolution for Picture Timing
NumUnitsInTicks = 1 # Number of Timer units per Tick
AspectRatioWidth = 1 # Aspect Ratio Width Scale
AspectRatioHeight = 1 # Aspect Ratio Height Scale
PixelRange = 1 # 1 =>Y- 0 to 255, Cb/Cr-0 to 255
 0 => Y-16 to 235, Cb/Cr-16 to 240
EnableVUIParam = 1 # 1 => Enable VUI parameters,
0 => Disable VUI Parameters
EnableBufSEI = 1 # 1 => Enable Buffering Period SEI Message,
 0 => Disable
ME_Type = 0 # ME search algorithm
 0 => Normal,
 1 => Low Power
RC_PRESET = 5 # 1 => Low Delay,
 2 => Storage,
 3 => 2 Pass,
 4 => None,
 5 => user defined
ENC_PRESET = 3 # 3 => User Defined Parameters

Encoder Control

ProfileIDC = 100 # Profile IDC (66=baseline, 77=main,
 100=high profile)

Installation Overview

2-7

LevelIDC = 30 # Level IDC (e.g. 20 = level 2.0)
IntraPeriod = 30 # Period of I-Frames
IDRFramePeriod = 0 # Period of IDR Frames
FramesToEncode = 10 # Number of frames to be coded
SliceSize = 0 # Size of each slice
EnMeMultiPart = 0 # 1 => Enable MB Partitions,
 0=> Single MV for each MB
RateControl = 1 # 0 => CBR,
 1 => VBR,
 2 = Fixed QP
MaxDelay = 2000 # Delay Parameter for Rate Control in
 Milliseconds
QPInit = 28 # Initial QP for RC (-1,0-51)
QPISlice = 48 # Quant. param for I Slices (0-51)
QPSlice = 48 # Quant. param for non - I slices (0-51)
MaxQP = 42 # Maximum value for QP (0-51)
MinQP = 0 # Minimum value for QP (0-51)
MaxQPI = 40 # Maximum value for QP for I frame(0-51)
MinQPI = 0 # Minimum value for QP for I Frame(0-51)
IntraThrQF = 0 # Reserved
AirRate = 0 # Number of Forced Intra MBs
UnRestrictedMV = 0 #1: Enable 0:Disable
EntropyCodingMode = 1 # Entropy Coding Mode (0 = CAVLC, 1 = CABAC)
Transform8x8FlagIntra = 1 # 0 = Disable,
 # 1 = Enable
Transform8x8FlagInter = 1 # 0 = Disable,
 # 1 = Enable
SequenceScalingFlag = 0 # 0 = Disable,
 # 1 = Auto,
 # 2 = Low,
 # 3 = Moderate,
 # 4 = Reserved
PerceptualRC = 1 # 1 => Enable Perceptual QP modulation,
 # 0 => Disable
EncoderQuality = 1 # 0 => Ver 1.1 mode (Backward compatible),
 # 2 => Platinum mode
mvSADout = 0 # 0=>disable mvsad out,
 # 1=>enable mvsad out
useARM926Tcm = 1 # 0->do not use arm 926 tcm,
 # 1-> use arm 926 tcm
enableROI = 0 # 0->disable ROI
 # 1-> enable ROI
mapIMCOPtoDDR = 0 #0->do not use DDR
 # 1-> use DDR instead of IMCOP
metaDataGenerateConsume = 0 # 0->Not in use,
 # 1-> Generate Meta data,
 # 2-> Use Metadata generated by other encoder.
sliceMode = 0 # 0 -> no multiple slices,
 # 1 -> Reserved,
 # 2 -> multiple slices-MBs/slice,
 # 3 -> multiple slices - Rows/slice
outputDataMode = 1 # 0 -> low latency, encoded streams produced
 # after N (configurable) slices encode,
 # 1 -> encoded stream produce at the end of frame
sliceFormat = 1 # 0-> encoded stream in NAL unit format,
 #1 -> encoded stream in bytes stream format

Loop filter parameters

LoopFilterDisable = 0 # Disable loop filter in slice header
 0=Filter,

Installation Overview

2-8

 1=No Filter,
 2 = Disable across Slice Boundaries

To check the functionality of the codec for the inputs other than those
provided with the release, change the configuration file accordingly, and
follow the steps as described in Section 2.2.

2.4.3 Encoder Sample Base Param Setting

The encoder can be run in IVIDENC1 base class setting. The extended
parameter variables of encoder will then assume default values. The
following list provides the typical values of IVIDENC1 base class variables.

typedef struct IVIDENC1_Params {
XDAS_Int32 size;
XDAS_Int32 encodingPreset = XDM_HIGH_SPEED; // Value = 2
XDAS_Int32 rateControlPreset = IVIDEO_STORAGE; //value = 2
XDAS_Int32 maxHeight = 720;
XDAS_Int32 maxWidth = 1280;
XDAS_Int32 maxFrameRate = 120000;
XDAS_Int32 maxBitRate = 50000000;
XDAS_Int32 dataEndianness = XDM_BYTE;
XDAS_Int32 maxInterFrameInterval = 1;
XDAS_Int32 inputChromaFormat = XDM_YUV_420SP; //value = 9
XDAS_Int32 inputContentType = IVIDEO_PROGRESSIVE;
XDAS_Int32 reconChromaFormat XDM_YUV_420SP; //value = 9;
} IVIDENC1_Params;
typedef struct IVIDENC1_DynamicParams {
XDAS_Int32 size; /**< @sizeField */
XDAS_Int32 inputHeight; /**< Input frame height. */
XDAS_Int32 inputWidth; /**< Input frame width. */
XDAS_Int32 refFrameRate = 30000;
XDAS_Int32 targetFrameRate = 30000;
XDAS_Int32 targetBitRate; < 10000000 /**< Target bit rate
in bits per second. */
XDAS_Int32 intraFrameInterval = 29;
XDAS_Int32 generateHeader = 0;
XDAS_Int32 captureWidth; // for demo, same as inputWith
XDAS_Int32 forceFrame; = IVIDEO_NA_FRAME
XDAS_Int32 interFrameInterval = 0;
XDAS_Int32 mbDataFlag = 0;
} IVIDENC1_DynamicParams;
typedef struct IVIDENC1_InArgs {
XDAS_Int32 size; /**< @sizeField */
XDAS_Int32 inputID; /* as per application*/
XDAS_Int32 topFieldFirstFlag = 0;
} IVIDENC1_InArgs;

2.5 Standards Conformance and User-Defined Inputs

To check the reference bit-stream conformance of the codec for the default
input file shipped along with the codec, follow the steps as described in
Section 2.3.

To check the conformance of the codec for other input files of your choice,
follow these steps:

1) Copy the input files to the \client\test\testvecs\input sub-directory.

Installation Overview

2-9

2) Copy the reference files to the \client\test\testvecs\reference sub-
directory.

3) Edit the configuration file, Testvecs.cfg available in the
\client\test\testvecs\config sub-directory. For details on the format of
the testvecs.cfg file, see section 2.4.

For each encoded frame, the application displays the message
indicating the frame number. In reference bit-stream compliance check
mode, the application additionally displays FAIL message, if the bit-
stream does not match with reference bit-stream.

After the encoding is complete, the application displays a summary of
total number of frames encoded. In reference bit-stream compliance
check mode, the application additionally displays PASS message, if
the bit-stream matches with the reference bit-stream.

If you have chosen the option to write to an output file (X is 0), you can
use any of the standard file comparison utility to compare the codec
output with the reference output and check for conformance.

2.6 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

Installation Overview

2-10

This page is intentionally left blank

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-2

3.2 Handshaking Between Application and Algorithm 3-6

3.3 Cache Management by Application 3-9

3.4 Sample Test Application 3-11

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IVIDENC1 base class of the H.264
Encoder library. The main test application files are h264encoderapp.c and
h264encoderapp.h. These files are available in the \client\test\src and
\client\test\inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application.

Figure 3-1. Test Application Sample Implementation

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, and so on. The test application obtains
the required parameters from the Encoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, testvecs.cfg and reads the list of
Encoder configuration file name (testparams.cfg).

2) Opens the Encoder configuration file, (testparams.cfg) and reads the
various configuration parameters required for the algorithm.

For more details on the configuration files, see Section 2.4.

3) Sets the IVIDENC1_Params structure based on the values it reads
from the Testparams.cfg file.

4) Sets the extended parameters of the IH264VENC_Params structure
based on the values it reads from the testparams.cfg file.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in a sequence:

1) algNumAlloc() - To query the algorithm about the number of
memory records it requires.

2) algAlloc() - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures
provided by the application.

A sample implementation of the create function that calls
algNumAlloc(), algAlloc(), and algInit() in sequence is provided
in the ALG_create() function implemented in the alg_create.c file.

After successful creation of the algorithm instance, the test application
does DMA resource allocation for the algorithm.

Sample Usage

3-4

Note:

DMAN3 function and IDMA3 interface is not implemented in
DM365/DM368 codecs. Instead, it uses a DMA resource header file,
which gives the framework the flexibility to change DMA resource to
codec.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run-time) by
calling the control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the
process()function call. The input and output buffer descriptors are
obtained by calling the control() function with the XDM_GETBUFINFO
command.

3) Implements the process call based on the mode of operation –
blocking or non-blocking. These different modes of operation are
explained below. The behavior of the algorithm can be controlled using
various dynamic parameters (see section 4.2.1.10). The inputs to the
process()functions are input and output buffer descriptors, pointer to
the IVIDENC1_InArgs and IVIDENC1_OutArgs structures.

4) Call the process() function to encode/decode a single frame of data.
After triggering the start of the encode/decode frame start, the video
task can be moved to SEM-pend state using semaphores. On receipt
of interrupt signal for the end of frame encode/decode, the application
should release the semaphore and resume the video task, which
performs book-keeping operations and updates the output parameters
structure -IVIDENC1_OutArgs.

Figure 3-2. Process Call with Host Release

Host
System
application

Process call frame n

HDVICP
Tasks

MB level tasks for
frame n

Host Video
Task

HDVICP Busy

Transfer of
tasks at Host

MB level tasks for
frame n+1

Process call frame n+1

Host system
tasks

Interrupt between
HDVICP and Host

Sample Usage

3-5

Note:

 The process call returns control to the application after the initial
setup related tasks are completed.

 Application can schedule a different task to use the Host resource
released free.

 All service requests from HDVICP are handled through interrupts.

 Application resumes the suspended process call after handling the
last service request for HDVICP.

 Application can now complete concluding portions of the process
call.

The control() and process() functions should be called only within
the scope of the algActivate() and algDeactivate() XDAIS
functions. The algActivate() and algDeactivate() XDAIS functions
activate and deactivate the algorithm instance respectively. Once the
algorithm is activated, the control() and process() functions can be of
any order. The following APIs are called in a sequence:

1) control() (optional) - To query the algorithm on status or setting of
dynamic parameters and so on, using the seven available control
commands.

2) process() - To call the Encoder with appropriate input/output buffer
and arguments information.

3) control() (optional) - To query the algorithm on status or setting of
dynamic parameters and so on, using the seven available control
commands.

4) algDeactivate() - To deactivate the algorithm instance.

The for loop encapsulates frame level process() call and updates the
input buffer and the output buffer pointer every time before the next call.
The for loop runs for the designated number of frames and breaks-off
whenever an error condition occurs.

In the sample test application, after calling algDeactivate(), the output
data is either dumped to a file or compared with a reference file.

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application deletes the
current algorithm instance The following APIs are called in a sequence:

1) algNumAlloc() - To query the algorithm about the number of
memory records it used.

2) algFree() - To query the algorithm to get the memory record
information, which can be used by the application for freeing them up.

A sample implementation of the delete function that calls algNumAlloc()
and algFree() in sequence is provided in the aLG_delete() function
implemented in the alg_create.c file.

Sample Usage

3-6

3.2 Handshaking Between Application and Algorithm

3.2.1 Resource Level Interaction

Following diagram explains the resource level interaction of the application
with framework component and codecs. Application uses XDM for
interacting with codecs. Similarly, it uses RMAN to grant resources to the
codec.

Figure
3-3. Resource Level Interaction.

Creation

Application Framework component CODEC

IALG_create fns

Register
Resource

RMAN_register

Assign
Resource

RMAN_assign
resource

Control and
Process

Free
Resource and
Exit

Codec
Deletion

RMAN_freeresou
rce and
RMAN_exit

Encoding /
Decoding

IALG_free fns

Details of
resource held by
codec

VICP buffers
memories, DMA
channel
information and
details of
iresfxns
implemented by
the codec.

Sample Usage

3-7

3.2.2 Handshaking Between Application and Algorithms

Application provides the algorithm with its implementation of functions for
the video task to move to SEM-pend state, when the execution happens in
the co-processor. The algorithm calls these application functions to move
the video task to SEM-pend state.

Figure 3-4. Interaction Between Application and Codec.

Note:

 Process call architecture shares Host resource among multiple
threads.

 ISR ownership is with the FC resource manager – outside the
codec.

 Codec implementation is OS independent.

The functions to be implemented by the application are:

1) HDVICPSYNC_start(IALG_Handle handle,
HDVICPSYNC_InterruptType intType, IRES_HDVICP_Handle
hdvicpHandle)

This function is called by the algorithm to register the interrupt with the
OS. This function also configures the Framework Component interrupt
synchronization routine.

2) HDVICPSYNC_wait (IRES_HDVICP_Handle hdvicpHandle)

This function is a FC call back function use to pend on a semaphore.
Whenever the codec has completed the work on Host processor (after
transfer of frame level encode/decode to HDVICP) and needs to relive
the CPU for other tasks, it calls this function.

Framework Provided
HDVICP Callback APIs

_process()

Application Side
Codec

#include <…/ires_hdvicp.h>
void _MyCodecISRFunction();
MYCODEC::IVIDENC1::process() {
 :
 …. set up for frame encoder

HDVICPSYNC_start(handle,
HDVICPSYNC_FIQ,

 handle->hdvicpResourceHandles[0])

HDVICPSYNC_wait(((H264VENC_TI_Obj
*)handle)->hdvicpResourceHandles[0]);
/* Wait until HDVICP set interrupt */
 // Release of HOST
 …. End of frame processing
}
void H264VENC_TI_isrfunction
(IALG_Handle handle)
{ H264venc_TII_Obj *h264venc = (void
*)handle;

int _doneSemaphore;
HDVICP_configure(handle,
hdVicpHandle, ISRFunction){
 installNonBiosISR(handle,
hdvicpHandle, ISRFunction);
}

VICP_register();

VICP_done();
VICP_unregister();

Sample Usage

3-8

This function of FC implements a semaphore which goes into pend
state and then the OS switches the task to another non-codec task.

Interrupts from HDVICP to Host ARM926 is used to inform when the
frame processing is done. HDVICP sends interrupt which maps to INT
No 10 (KALINT9 Video MJCP) of ARM926 INTC. After receiving this
interrupt, the semaphore on which the codec task was waiting gets
released and the execution resumes after the HDVICPSYNC_wait()
function.

The following figure explains the interrupt interaction between
application and codec.

Figure 3-5. Interrupt Between Codec and Application.

Framework calls Encoder Init

HOST ARM926 HDVICP

Start frame processing
At the end send interrupt to Host
that it has finished

Inform Host through interrupt

Codec task wakes up to finish end
of frame processing and returns
back to framework

Framework Calls Encode frame
process

HDVICPSYNC_wait() uses to make
the codec task sleep

Pending over
Exit HDVICPSYNC_wait()

Different task running

This interrupt is not
visible to
framework. It
happens inside
codec library

This interrupt
should be serviced
by framework

Codec lib calls HDVICPSYNC_start
to register the ISR with framework
Codec library internally sends
interrupt to HDVICP to start
processing
Codec calls framework
HDVICP_wait()

Sample Usage

3-9

3.3 Cache Management by Application

3.3.1 Cache Usage By Codec Algorithm

The codec source code and data, which runs on Host ARM926 can be
placed in DDR. The host of DM365/DM368 has MMU and cache that the
application can enable for better performance. Since the codec also uses
DMA, there can be inherent cache coherency problems when application
turns on the cache.

3.3.2 Cache and Memory Related Call Back Functions for Linux

To resolve the cache coherency and virtual to physical address issues, FC
provides memory until library. These following functions can be used by
codecs to resolve the cache coherency issues in Linux:

 cacheInvalidate

 cacheWb

 cacheWbInv

 getPhysicalAddr

Sample Usage

3-10

3.3.2.1 cacheInvalidate

In cache invalidation process, the entries of the cache are deleted. This
API invalidates a range of cache.

Void MEMUTILS_cacheInv (Ptr addr, Int sizeInBytes)

3.3.2.2 cacheWb

This API writes back cache to the cache source when it is necessary.

Void MEMUTILS_cacheWb (Ptr addr, Int sizeInBytes)

3.3.2.3 cacheWbInv

This API writes back cache to the cache source when it is necessary and
deletes the cache contents.

Void MEMUTILS_cacheWbInv (Ptr addr, Int sizeInBytes)

3.3.2.4 getPhysicalAddr

This API obtains the physical address.

Void* MEMUTILS_getPhysicalAddr (Ptr addr))

Sample Usage

3-11

3.4 Sample Test Application

The test application exercises the IVIDENC1 base class of the H.264
Encoder.

Table 3-1. process () Implementation

/* Main Function acting as a client for Video encode Call*/
/* Acquiring and intializing the resources needed to run the
encoder */
iresStatus = (IRES_Status) RMAN_init();
iresStatus = (IRES_Status) RMAN_register(&IRESMAN_EDMA3CHAN,
(IRESMAN_Params *)&configParams);

/*---------------- Encoder creation -----------------*/
handle = H264VENC_create(&fxns, ¶ms)

/*Getting instance of algorithms that implements IALG and
IRES functions*/
iErrorFlag = RMAN_assignResources((IALG_Handle)handle,
 &H264VENC_TI_IRES, /* IRES_Fxns* */
 1 /* scratchId */);
/* Get Buffer information */
iErrorFlag = H264VENC_control(
 handle, // Instance Handle
 XDM_GETSTATUS, // Command
 &dynamicparams, // Pointer to Dynamicparam structure
 &status // Pointer to the status structure
);
/*SET BASIC INPUT PARAMETERS */
iErrorFlag = H264VENC_control(
 handle, // Instance Handle
 XDM_GETSTATUS, // Command
 &dynamicparams, // Pointer to Dynamicparam structure
 &status // Pointer to the status structure
);
/* Based on the Num of buffers requested by the algorithm,
 the application will allocate for the same here
 */
AllocateH264IOBuffers(
 status, // status structure
 &inobj, // Pointer to Input Buffer Descriptor
&outobj) // Pointer to Output Buffer Descriptor
);
/*Set Dynamic input parameters */
iErrorFlag = H264VENC_control(
 handle, // Instance Handle
 XDM_GETSTATUS, // Command
 &dynamicparams, // Pointer to Dynamicparam structure
 &status // Pointer to the status structure
);

/* for Loop for encode Call for a given no of frames */
For(;;)
/* Read the input frame in the Application Input Buffer */
ReadInputData (inFile);
/*--*/
/* Start the process : To start Encoding a frame */
/* This will always follow a H264VENC_encode_end call */

Sample Usage

3-12

/*--*/

 iErrorFlag = H264VENC_encode (
 handle, // Instance Handle - Input
 &inobj, // Input Buffers - Input
 &outobj, // Output Buffers - Output
 &inargs, // Input Parameters - Input
 &outargs // Output Parameters - Output
);
/* Get the statatus of the Encoder using control */
H264VENC_control(
 handle, // Instance Handle
 XDM_GETSTATUS, // Command - GET STATUS
 &dynamicparams, // Input
 &status // Output
);
 }
/* end of Do-While loop - which Encodes frames */
/* Free Input and output buffers */
FreeH264IOBuffers(
 &inobj, // Pointer to Input Buffer Descriptor
&outobj // Pointer to Output Buffer Descriptor);
/* Free assigned resources */
RMAN_freeResources((IALG_Handle)(handle),
 &H264VENC_TI_IRES, /* IRES_Fxns* */
);
/* Delete the encoder Object handle*/
H264VENC_delete(handle);
/* Unregister protocal*/
RMAN_unregister(&IRESMAN_EDMA3CHAN);
RMAN_exit();

Note:

This sample test application does not depict the actual function parameter or
control code. It shows the basic flow of the code.

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-22

4.3 H.264 Encoder ROI specific Data Structures and Enumerations 4-50

4.4 H264 Encoder Two Pass Encoder data structure 4-53

4.5 H.264 Encoder Low latency specific Data Structures and
Enumerations

4-55

4.6 Interface Functions 4-59

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation of the same is also provided.

4.1.1 Common XDM Symbolic Constants and Enumerated Data Types

Table 4-1. List of Enumerated Data Types
Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_I_FRAME Intra coded frame

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_IDR_FRAME Intra coded frame that can be
used for refreshing video content

IVIDEO_II_FRAME Interlaced frame, both fields are I
frames..

IVIDEO_IP_FRAME Interlaced frame, first field is an I
frame, second field is a P frame.

IVIDEO_IB_FRAME Interlaced frame, first field is an I
frame, second field is a B frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_PI_FRAME Interlaced frame, first field is a P
frame, second field is an I frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_PP_FRAME Interlaced frame, both fields are P
frames.

IVIDEO_PB_FRAME Interlaced frame, first field is a P
frame, second field is a B frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_BI_FRAME Interlaced frame, first field is a B
frame, second field is an I frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_FrameType

IVIDEO_BP_FRAME Interlaced frame, first field is a B
frame, second field is a P frame.
Not supported in this version of
H.264 Encoder.

API Reference

4-3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_BB_FRAME Interlaced frame, both fields are B
frames.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_I_FRAME Intra coded MBAFF frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_P_FRAME

Forward inter coded MBAFF
frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_B_FRAME Bi-directional inter coded MBAFF
frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_IDR_FRAME Intra coded MBAFF frame that can
be used for refreshing video
content.
Not supported in this version of
H.264 Encoder.

IVIDEO_FRAMETYPE_DEFAULT The default value is set to
IVIDEO_I_FRAME.

IVIDEO_CONTENTTYPE_NA

Content type is not applicable.
Encoder assumes
IVIDEO_PROGRESSIVE.

IVIDEO_PROGRESSIVE Progressive video content.
This is the default value.

IVIDEO_ContentType

IVIDEO_INTERLACED Interlaced video content.

IVIDEO_NONE No rate control is used

IVIDEO_LOW_DELAY Constant Bit-Rate (CBR) control
for video conferencing.

IVIDEO_STORAGE Variable Bit-Rate (VBR) control for
local storage and recording.
This is the default value.

IVIDEO_USER_DEFINED User defined configuration using
advanced parameters (extended
parameters).

IVIDEO_TWOPASS Two pass rate control for non real
time applications.
Not supported in this version of
H.264 Encoder.

IVIDEO_RateControlPreset

IVIDEO_RATECONTROLPRESET_
DEFAULT

Set to IVIDEO_LOW_DELAY

API Reference

4-4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FRAME_ENCODED Input content encoded

IVIDEO_FRAME_SKIPPED Input content skipped, that is, not
encoded

IVIDEO_SkipMode

IVIDEO_SKIPMODE_DEFAULT Default value is set to
IVIDEO_FRAME_ENCODE

XDM_BYTE Big endian stream.
This is the default value.

XDM_LE_16 16-bit little endian stream.
Not supported in this version of
H.264 Encoder.

XDM_DataFormat

XDM_LE_32 32-bit little endian stream.
Not supported in this version of
H.264 Encoder.

XDM_CHROMA_NA

Chroma format not applicable.
Encoder assumes
IH264VENC_YUV_420IUV

XDM_YUV_420P YUV 4:2:0 planar.
Not supported in this version of
H.264 Encoder.

XDM_YUV_422P YUV 4:2:2 planar.
Not supported in this version of
H.264 Encoder.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big
endian).
Not supported in this version of
H.264 Encoder.

XDM_YUV_422ILE YUV 4:2:2 interleaved (little
endian).
Not supported in this version of
H.264 Encoder.

XDM_YUV_444P YUV 4:4:4 planar.
Not supported in this version of
H.264 Encoder.

XDM_YUV_411P YUV 4:1:1 planar.
Not supported in this version of
H.264 Encoder.

XDM_GRAY Gray format.
Not supported in this version of
H.264 Encoder.

XDM_ChromaFormat

XDM_RGB RGB color format.
Not supported in this version of
H.264 Encoder.

API Reference

4-5

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_YUV_420SP YUV 420 semiplanar (Luma 1st
plane, * CbCr interleaved 2nd
plane)

XDM_ARGB8888 Alpha plane
Not supported in this version of
H.264 Encoder

XDM_RGB555 RGB 555 color format
Not supported in this version of
H.264 Encoder

XDM_RGB565 RGB 556 color format
Not supported in this version of
H.264 Encoder

XDM_YUV_444ILE YUV 4:4:4 interleaved (little
endian)
Not supported in this version of
H.264 Encoder

XDM_GETSTATUS Query algorithm instance to fill
Status structure

XDM_SETPARAMS Set run-time dynamic parameters
through the DynamicParams
structure

XDM_RESET Reset the algorithm

XDM_SETDEFAULT Initialize all fields in
DynamicParams structure to
default values specified in the
library

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.
Not supported in this version of
H.264 Encoder.

XDM_GETVERSION Query the algorithm version.

XDM_CmdId

XDM_GETBUFINFO Query algorithm instance
regarding the properties of input
and output buffers.

XDM_DEFAULT Default setting of the algorithm
specific creation time parameters.
This uses XDM_HIGH_QUALITY
settings.

XDM_EncodingPreset

XDM_HIGH_QUALITY Set algorithm specific creation
time parameters for high quality
(default setting).

API Reference

4-6

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_HIGH_SPEED Set algorithm specific creation
time parameters for high speed.

XDM_USER_DEFINED User defined configuration using
advanced parameters.

XDM_ENCODE_AU Encode entire access unit. This is
the default value.

XDM_EncMode

XDM_GENERATE_HEADER Encode only header.

XDM_APPLIEDCONCEALMENT Bit 9
 1 – Applied concealment
 0 – Ignore

XDM_INSUFFICIENTDATA Bit 10
 1 – Insufficient data
 0 – Ignore

XDM_CORRUPTEDDATA Bit 11
 1 – Data problem/corruption
 0 – Ignore

XDM_CORRUPTEDHEADER Bit 12
 1 – Header

problem/corruption
 0 – Ignore

XDM_UNSUPPORTEDINPUT Bit 13
 1 – Unsupported

 feature/parameter in
input

 0 – Ignore

XDM_UNSUPPORTEDPARAM Bit 14
 1 – Unsupported input

 parameter or
configuration

 0 – Ignore

XDM_ErrorBit

XDM_FATALERROR Bit 15
 1 – Fatal error (stop

encoding)
 0 – Recoverable error

Note:

 encodingPreset: There are no tools which can cause perfromance
difference. Hence, XDM_HIGH_QUALITY and XDM_HIGH_SPEED will
give the same bitstream/perfromance.

 The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

 Bit 16-32: Reserved

 Bit 8: Reserved

API Reference

4-7

 Bit 0-7: Codec and implementation specific

The algorithm can set multiple bits to 1 depending on the error condition.

4.1.2 H264 Encoder Symbolic Constants and Enumerated Data Types

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IH264VENC_LEVEL_10 Level 1.0 identifier for H.264 Encoder

IH264VENC_LEVEL_1b Level 1.b identifier for H.264 Encoder

IH264VENC_LEVEL_11 Level 1.1 identifier for H.264 Encoder

IH264VENC_LEVEL_12 Level 1.2 identifier for H.264 Encoder

IH264VENC_LEVEL_13 Level 1.3 identifier for H.264 Encoder

IH264VENC_LEVEL_20 Level 2.0 identifier for H.264 Encoder

IH264VENC_LEVEL_21 Level 2.1 identifier for H.264 Encoder

IH264VENC_LEVEL_22 Level 2.2 identifier for H.264 Encoder

IH264VENC_LEVEL_30 Level 3.0 identifier for H.264 Encoder

IH264VENC_Level

IH264VENC_LEVEL_31 Level 3.1 identifier for H.264 Encoder

 IH264VENC_LEVEL_32 Level 3.2 identifier for H.264 Encoder

 IH264VENC_LEVEL_40 Level 4.0 identifier for H.264 Encoder

 IH264VENC_LEVEL_41 Level 4.1 identifier for H.264 Encoder

 IH264VENC_LEVEL_42 Level 4.2 identifier for H.264 Encoder

 IH264VENC_LEVEL_50 Level 5.0 identifier for H.264 Encoder

4.1.3 H264 Encoder Error code Enumerated Data Types

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

API Reference

4-8

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IH264VENC_STATUS

IH264VENC_ERR_MAXWIDTH maxWidth not supported. “Fatal input
error” is returned in algInit instance
creation stage if maxWidth in the input
params exceeds
H264VENC_TI_MAX_WIDTH (2048)
or is less than
H264VENC_TI_MIN_WIDTH

H264VENC_TI_MIN_WIDTH takes
value of
128 in case of encodingPreset =
XDM_USER_DEFINED and
encQuality = 0
OR
320 in case of encodingPreset =
XDM_HIGH_SPEED/XDM_HIGH_QUAL
ITY.

 IH264VENC_ERR_MAXHEIGH
T

maxHeight not supported. fatal input
error is returned in algInit instance
creation stage if maxHeight in input
params exceeds
H264VENC_TI_MAX_HEIGHT (2048)
or is less than
H264VENC_TI_MIN_HEIGHT

H264VENC_TI_MIN_HEIGHT takes
value of
96 in case of encodingPreset =
XDM_USER_DEFINED and
encQuality = 0
OR
128 in case of encodingPreset =
XDM_HIGH_SPEED/XDM_HIGH_QUAL
ITY.

 IH264VENC_ERR_ENCODING
PRESET

encodingPreset not supported fatal
input error” is returned during
algInit if the encodingPreset
parameter is out of supported range
XDM_DEFAULT (0) to
XDM_USER_DEFINED (3) inclusive .

 IH264VENC_ERR_RATECONT
ROLPRESET

rateControlPreset not supported
fatal input error is returned during
algInit if the rateControlPreset
parameter is out of supported range 0
to IVIDEO_USER_DEFINED (5)
inclusive.

 IH264VENC_ERR_MAXFRAME
RATE

maxFrameRate not supported. “Fatal
input error” is returned during
algInit if maxFrameRate exceeds
max supported value of 120000 or is
less than 0.

API Reference

4-9

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_MAXBITRA
TE

maxBitRate not supported fatal input
error is returned during algInit if
maxBitRate exceed max supported
value of 50000000 or is less than 0.

 IH264VENC_ERR_DATAENDI
ANNESS

dataEndianness not supported fatal
input error is returned during algInit
if dataEndianness is not set to
XDM_BYTE.

 IH264VENC_ERR_INPUTCHR
OMAFORMAT

inputChromaFormat not supported
fatal input error is returned during
algInit if inputChromaFormat is
not set to XDM_YUV_420SP or
XDM_CHROMA_NA.

 IH264VENC_ERR_INPUTCON
TENTTYPE

inputContentType not supported
fatal input error is returned during
algInit if inputContentType is
not set to IVIDEO_PROGRESSIVE or
IVIDEO_INTERLACED.
This error is also returned during
algInit if interlaced encoding is
enabled (inputContentType set to
IVIDEO_INTERLACED) for levels less
than 2.1 or more than 4.1.

 IH264VENC_ERR_RECONCHR
OMAFORMAT

reconChromaFormat not supported
fatal input error is returned during
algInit if reconChromaFormat is
not set to XDM_YUV_420SP or
XDM_CHROMA_NA.

 IH264VENC_ERR_INPUTWID
TH

inputWidth not supported fatal input
error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
the inputWidth in input dynamic
params exceeds maxWidth or if
inputWidth is less than
H264VENC_TI_MIN_WIDTH or not
multiple of 2. Control call returns
IVIDENC1_EFAIL.
H264VENC_TI_MIN_WIDTH takes
value of
128 in case of encodingPreset =
XDM_USER_DEFINED and
encQuality = 0
OR
320 in case of encodingPreset =
XDM_HIGH_SPEED/XDM_HIGH_QUAL
ITY.

API Reference

4-10

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_INPUTHEI
GHT

inputHeight not supported fatal
input error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
the inputHeight in input dynamic
params exceeds maxHeight or if
inputHeight is less than
H264VENC_TI_MIN_HEIGHT or not
multiple of 2 for progressive content
and not multiple of 4 for interlaced
content. Control call returns
IVIDENC1_EFAIL.
H264VENC_TI_MIN_HEIGHT takes
value of
96 in case of encodingPreset =
XDM_USER_DEFINED and
encQuality = 0
OR
128 in case of encodingPreset =
XDM_HIGH_SPEED/XDM_HIGH_QUAL
ITY.

 IH264VENC_ERR_MAX_MBS_
IN_FRM_LIMIT_EXCEED

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
the number of MBs in a frame exceeds
the maximum limit for resolution of
2048x2048. Control call returns
IVIDENC1_EFAIL

 IH264VENC_ERR_TARGETFR
AMERATE

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
targetFrameRate in dynamic
params exceeds maxFrameRate or is
less than 0 or not a multiple of 500.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_TARGETBI
TRATE

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
targetBitRate in dynamic params
exceeds maxBitRate or less than 0.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_PROFILEI
DC

profileIdc not supported fatal
input error is returned during algInit
if profileIdc is not 66 (BP) or
77(MP) or 100 (H)

API Reference

4-11

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_LEVELIDC levelIdc not supported fatal input
error is returned during g algInit if
levelIdc is not as per
IH264VENC_Level range
IH264VENC_LEVEL_1b(9) to
IH264VENC_LEVEL_50(50)

 IH264VENC_ERR_ENTROPYM
ODE_IN_BP

entropyMode not supported, a fatal
input error is returned during algInit
if entropyMode is 1 (CABAC) for
Baseline Profile (profileIdc = 66)
or if the value is out of the supported
range 0 or 1 for Main/High Profile
(profileIdc = 77/100)

 IH264VENC_ERR_TRANSFOR
M8X8FLAGINTRA_IN_BP_MP

transform8x8FlagIntraFrame
not supported, a fatal input error is
returned during algInit if
transform8x8FlagIntraFrame is
enabled for Baseline or Main Profile
(profileIdc = 66 or 77) or if the
value is out of the supported range 0
or 1 for High Profile (profileIdc =
100)

 IH264VENC_ERR_TRANSFOR
M8X8FLAGINTER_IN_BP_MP

transform8x8FlagInterFrame
not supported, a fatal input error is
returned during algInit if
transform8x8FlagInterFrame is
enabled for Baseline or Main Profile
(profileIdc = 66 or 77) or if the
value is out of the supported range 0
or 1 for High Profile (profileIdc =
100)

 IH264VENC_ERR_SEQSCALI
NGFLAG_IN_BP_MP

seqScalingFlag not supported, a
fatal input error is returned during
algInit if seqScalingFlag is
enabled for Baseline or Main Profile
(profileIdc = 66 or 77) or if the value is
out of the supported range from 0:4 for
High Profile (profileIdc = 100)

 IH264VENC_ERR_ASPECTRA
TIOX

aspectRatioX not supported fatal
input error is returned during algInit
if aspectRatioX is lesst than 1.

 IH264VENC_ERR_ASPECTRA
TIOY

aspectRatioY not supported fatal
input error is returned during algInit
if aspectRatioY is less than 1.

 IH264VENC_ERR_PIXELRAN
GE

pixelRange n not supported fatal
input error is returned during algInit
if pixelRange is not 0 or 1.

API Reference

4-12

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_TIMESCAL
E

timeScale not supported fatal input
error is returned during algInit if
timeScale is less than 0 or if
timeScale * 1000 exceeds
targetFrameRate.

 IH264VENC_ERR_NUMUNITS
INTICKS

numUnitsInTicks not supported
fatal input error is returned during
algInit if numUnitsInTicks is
less than 0.

 IH264VENC_ERR_ENABLEVU
IPARAMS

enableVUIparams not supported
fatal input error is returned during
algInit if enableVUIparams is
not 0, 1 or 2.

 IH264VENC_ERR_RESETHDV
ICPEVERYFRAME

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
resetHDVICPeveryFrame extended
dynamic parameter is not 0 or 1.
Control call returns
IVIDENC1_EFAIL..

 IH264VENC_ERR_MEALGO meAlgo not supported fatal input error
is returned during algInit if meAlgo
is not 0 or 1.

 IH264VENC_ERR_UNRESTRI
CTEDMV

unrestrictedMV not supported fatal
input error is returned during algInit
if unrestrictedMV is not 0 or 1.

 IH264VENC_ERR_ENCQUALI
TY

encQuality not supported fatal input
error is returned during algInit if
encQuality is not 0, 1 or 2.

 IH264VENC_ERR_ENABLEAR
M926TCM

enableARM926Tcm not supported
fatal input error is returned during
algInit if enableARM926Tcm is
not 0 or 1. This error is also returned if
enableARM926Tcm is 1 for
maxWidth greater than 1280.

 IH264VENC_ERR_ENABLEDD
RBUFF

mapIMCOPtoDDR not supported fatal
input error is returned during algInit
if mapIMCOPtoDDR is not 0 or 1.

 IH264VENC_ERR_SLICEMOD
E

sliceMode not supported fatal input
error is returned during algInit if
sliceMode is not 0, 1, 2 or 3

 IH264VENC_ERR_OUTPUTDA
TAMODE

oututDataMode not supported fatal
input error is returned during algInit
if outputDataMode is not 0 or 1.

API Reference

4-13

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_SLICEFOR
MAT

sliceFormat not supported fatal
input error is returned during algInit
if sliceFormat is not 0 or 1.

 IH264VENC_ERR_LEVEL_NO
T_FOUND

This fatal error is returned in
videncStatus.extendedError during
XDM_SETPARAMS control call if
inputWidth, inputHeight,
targetBitRate and
targetFrameRate are not compliant
to Level limits specified in Table A-1 of
ISO/IEC 14496-10. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_REFFRAME
RATE_MISMATCH

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
refFrameRate and
targetFrameRate mismatch. Control
call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_INTRAFRA
MEINTERVAL

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
intraFrameInterval is less than 0.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_GENERATE
HEADER

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
generateHeader is not 0 or 1.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_FORCEFRA
ME

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
forceFrame is not
IVIDEO_NA_FRAME or
IVIDEO_I_FRAME or
IVIDEO_IDR_FRAMEE. Control call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_RCALGO This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
rcAlgo is not set to 0, 1 or 2 when
rcPreset is
IVIDEO_USER_DEFINED. Control call
returns IVIDENC1_EFAIL.

API Reference

4-14

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_INTRAFRA
MEQP

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
intraFrameQP is less than 0 or more
than 51. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_INTERPFR
AMEQP

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
interPFrameQP is less than 0 or
more than 51. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_RCQMAX This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
rcQMax is less than 0 or more than
51. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_RCQMIN This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
rcQMin is less than 0 or more than
rcQMax. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_RCIQMAX This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
rcQMaxI is less than 0 or more than
51. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_RCIQMIN This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
rcQMinI is less than 0 or more than
rcQMaxI. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_INITQ This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
initQ is less than -1 or more than 51.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MAXDELAY This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
maxDelay exceeds 10000. Control
call returns IVIDENC1_EFAIL.

API Reference

4-15

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_LFDISABL
EIDC

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
lfDisableIdc is less than 0 or more
than 2. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_ENABLEBU
FSEI

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
enableBufSEI is not 0 or 1. Control
call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_ENABLEPI
CTIMSEI

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
enablePicTimSEI is not 0 or 1.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_SLICESIZ
E

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
sliceSize is not with in range. The
range depends on the value of
sliceMode. Control call returns
IVIDENC1_EFAIL.
See the note at end of section 4.2.2.2
for more details on range and
interpretation of sliceSize.

 IH264VENC_ERR_INTRASLI
CENUM

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
intraSliceNum is less than 0.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_AIRRATE This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
airRate is less than of 0. Control call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MEMULTIP
ART

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
meMultiPart is not 0 or 1. Control
call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_INTRATHR
QF

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
intraThrQF is less than 0 or more
than 5. Control call returns
IVIDENC1_EFAIL.

API Reference

4-16

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_PERCEPTU
ALRC

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
perceptualRC is not 0 or 1. Control
call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IDRFRAME
INTERVAL

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
idrFrameInterval is less than 0.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MVSADOUT
FLAG

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
mvSADoutFlag is not 0 or 1. Control
call returns IVIDENC1_EFAIL

 IH264VENC_ERR_ENABLERO
I

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
enableROI is not 0 or 1. Control call
returns IVIDENC1_EFAIL

 IH264VENC_ERR_METADATA
FLAG

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
metaDataGenerateConsume is
not set between 0 and 3. Control call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MAXINTER
FRAMEINTERVAL

This fatal unsupported param error is
returned in algInit instance creation
if maxInterFrameInterval not 0 or
1.

 IH264VENC_ERR_CAPTUREW
IDTH

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
captureWidth is not 0 and less than
inputWidth. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_INTERFRA
MEINTERVAL

This fatal error is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
interFrameInterval is not 0 or 1.
Control call returns
IVIDENC1_EFAIL..

 IH264VENC_ERR_MBDATAFL
AG

This warning is returned in
videncStatus.extendedError
during XDM_SETPARAMS control call if
mbDataFlag is not set to 0. Control
call returns IVIDENC1_EFAIL.

API Reference

4-17

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_IVIDENC1
_DYNAMICPARAMS_SIZE_IN
_CORRECT

This fatal error is returned in
videncStatus.extendedError
during a control call if dynamic param
size is not
IVIDENC1_DynamicParams or
IH264VENC_DynamicParams.
Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_PRO CESS_ARGS_NULL

This fatal error is returned in process
call if any of input handle or inBufs or
inArgs or outBufs are NULL.

 IH264VENC_ERR_IVIDENC1
_INARGS_SIZE

This fatal error is returned in
outArgs->extendedError if
inargs size in process call is not set
to IVIDENC1_InArgs or
IH264VENC_InArgs. This error is
returned provided OutArgs size is set
correctly. Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_OUTARGS_SIZE

This fatal error can be retrieved from a
XDM_GETSTATUS control call if
outArgs size in process call was not
set to IVIDENC1_OutArgs or
IH264VENC_OutArgs. Process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_INARGS_INPUTID

This fatal error is returned in
outArgs->extendedError if
inputID in inArgs of process call is
0. Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_INARGS_TOPFIELDFIRSTF
LAG

This fatal error is retruned in
outArgs->extendedError if
topFieldFirstFlag in inArgs is
not set correctly to 0 or 1 for interlace
content. Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_INBUFS

This fatal error is returned in
outArgs->extendedError if
inBufs is null or if numBufs in
inBufs is not set to 2 or if
frameWidth and frameHeight in
inBufs are not equal to inputWidth
and inputHeight of
XDM_SETPARAMS control call. Process
call returns IVIDENC1_EFAIL.

API Reference

4-18

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_IVIDENC1
_INBUFS_BUFDESC

This fatal error is returned in
outArgs->extendedError if buffer
descriptors in inBufs are either NULL
or if their sizes are less than the frame
size. Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_OUTBUFS

This fatal error is returned in
outArgs->extendedError if
outBufs is NULL or if numBufs in
outBufs is less than 1, Process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_OUTBUFS_NULL

This fatal error is returned in
outArgs->extendedError if bufs
or bufSizes of outBufs is NULL,
Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1
_INVALID_NUM_OUTDATA_U
NIT

This fatal error is returned in
outArgs->extendedError if
numOutputDataUnits is not valid. Valid
values are 1 to
IH264VENC_TI_MAXNUMBLOCKS.
Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_INTERLAC
E_IN_BP

This fatal error is returned during
algInit() instance creation stage if
application tries to encode interlaced
content in Baseline Profile mode.

 IH264VENC_ERR_INSERTUS
ERDATA

This fatal error is returned in
outArgs->extendedError if
insertUserData in extended
inArgs is not 0 or 1, Process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_LENGTHUS
ERDATA

This fatal error is returned in
outArgs->extendedError if
lengthUserData in extended
inArgs is less than 0. Process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_ROIPARAM This fatal error is returned in
outArgs->extendedError if ROI
parameters in extended inArgs
are not set correctly. Process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_PROCESS_
CALL

This fatal error is returned in
outArgs->extendedError if
process call encounters a fatal error
during execution. Process call returns
IVIDENC1_EFAIL.

API Reference

4-19

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_HANDLE_N
ULL

This fatal error is returned when input
handle is NULL. If the handle is NULL
in algFree or algInit call this error
is returned to call function. If the
handle is NULL in a control call this
error is returned in sStatus-
>videncStatus.extendedError
and control call returns
IVIDENC1_EFAIL. If the handle is
NULL in a process call this error is
returned in outArgs-
>extendedError and process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_INCORREC
T_HANDLE

This fatal error is returned when
incorrect codec handle is passed to
code API. If the handle is incorrectly
passed in algFree or algInit call
this error is returned to callee function.
If the handle is incorrectly passed in a
control call this error is returned in
sStatus-
>videncStatus.extendedError
and control call returns
IVIDENC1_EFAIL. If the handle is
incorrectly passed in a process call this
error is returned in outArgs-
>extendedError and process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MEMTAB_N
ULL

This fatal error is returned when
memtabs passed to algInit or
algFree are NULL or not aligned to
32bit word boundary.

 IH264VENC_ERR_IVIDENC1
_INITPARAMS_SIZE

This fatal error is returned when size of
algParams passed to algInit is not
set to size of IVIDENC1_Params or
size of IH264VENC_Params.

 IH264VENC_ERR_MEMTABS_
BASE_NULL

This fatal error is returned when base
pointer of memTabs passed to
algInit are NULL.

 IH264VENC_ERR_MEMTABS_
BASE_NOT_ALIGNED

This fatal error is returned when base
pointer of memTabs passed to
algInit are not aligned as per the
requested alignment specified in
algAlloc.

 IH264VENC_ERR_MEMTABS_
SIZE

This fatal error is returned when size
of memTabs passed to algInit are
less than the requested size specified
in algAlloc.

API Reference

4-20

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_MEMTABS_
ATTRS

This fatal error is returned when
attrs of memTabs passed to
algInit are not as per the requested
attrs specified in algAlloc.

 IH264VENC_ERR_MEMTABS_
SPACE

This fatal error is returned when
space of memTabs passed to
algInit are not as per the requested
space specified in algAlloc.

 IH264VENC_ERR_MEMTABS_
OVERLAP

This fatal error is returned any two
memTabs passed to algInit are
overlapping in memory.

 IH264VENC_ERR_CODEC_IN
ACTIVE

This fatal error is returned when codec
process call or control call is made
without activating it. If a control call is
made without aprior algActivate
this error is returned in sStatus-
>videncStatus.extendedError
and control call returns
IVIDENC1_EFAIL. If a process call is
made without aprior algActivate
this error is returned in outArgs-
>extendedError and process call
returns IVIDENC1_EFAIL

 IH264VENC_WARN_LEVELID
C

This warning is returned in
videncStatus.extendedError in
XDM_GETSTATUS control call after
instance creation if leveldc during
instance creation is not set to valid
level enumerations range from
IH264VENC_LEVEL_1b to
IH264VENC_LEVEL_50. Encoder
would continue assuming levelIdc
as IH264VENC_LEVEL_50.

 IH264VENC_WARN_RATECON
TROLPRESET

This warning is returned in
videncStatus.extendedError in
XDM_GETSTATUS control call after
instance creation if rcPreset is
neither of IVIDEO_NONE or
IVIDEO_LOW_DELAY or
IVIDEO_STORAGE. Encoder would
continue by assuming rcPreset is
IVIDEO_LOW_DELAY.

API Reference

4-21

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_STATUS_B
UF

This warning is returned in
videncStatus.extendedError
during XDM_GETVERSION control call
if videncStatus.data.buf is
NULL or if
videncStatus.data.bufSize is
insufficient to copy the library version
string. The control call returns
IVIDENC1_EFAIL.

API Reference

4-22

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM_BufDesc

 XDM1_BufDesc

 XDM_SingleBufDesc

 XDM1_SingleBufDesc

 XDM_AlgBufInfo

 IVIDEO_BufDesc

 IVIDEO1_BufDescIn

 IVIDENC1_Fxns

 IVIDENC1_Params

 IVIDENC1_DynamicParams

 IVIDENC1_InArgs

 IVIDENC1_Status

 IVIDENC1_OutArgs

API Reference

4-23

4.2.1.1 XDM_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data type Input/
Output

Description

**bufs XDAS_Int8 Input Pointer to the vector containing buffer addresses

numBufs XDAS_Int32 Input Number of buffers

*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control() function
with the XDM_GETBUFINFO command.

║ Fields

Field Data type Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_MAX
_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each input buffer

minOutBufSize[XDM_MA
X_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each output buffer

Note:

For H.264 Base/Main/High Profile Encoder, the buffer details are:

 Number of input buffer required is 2 for YUV 420P with chroma
interleaved.

 Number of output buffer required is 1.

 The input buffer sizes (in bytes) for worst case 2048x2048 format
are:

 For YUV 420P:
 Y buffer = 2048 * 2048
 UV buffer = 2048 * 1024

The above input buffer size calculation is done assuming that the

API Reference

4-24

capture width is same as input width. For details on capture width, see
Section 4.2.1.10.

For interlaced sequence, encoder ignores the input field buffers if they
are stored in interleaved or non-interleaved format. But, it expects the
start pointer of top or bottom field be given to it during the process call
of the top or bottom fields, respectively. The pitch to move to the next
line of the field is conveyed using captureWidth of DynamicParams.

 There is no restriction on output buffer size except that it should be
enough to store one frame of encoded data.The output buffer size
returned by the XDM_GETBUFINFO command assumes that the worst
case output buffer size is (frameHeight*frameWidth)/2.

 In case of STP, low resolution needs an extra output buffer to pass
metadata information from codec to application. High resolution
needs an extra input buffer to pass metadata information from
application to codec. The metadata is copied from output buffer of
low resolution encoder to the input buffer of high resolution encoder.

These are the maximum buffer sizes, but you can reconfigure
depending on the format of the bit-stream.

4.2.1.3 XDM1_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers in
XDM 1.0 IVIDENC1.

║ Fields

Field Data type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX_I
O_BUFFERS]

XDM1_Singl
eBufDesc

Input Array of buffer descriptors.

4.2.1.4 XDM_SingleBufDesc

║ Description

This structure defines the single buffer descriptor for input and output
buffers in XDM 1.0 IVIDENC1.

║ Fields

Field Data type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to a buffer address

bufSize XDAS_Int32 Input Size of the buffer in bytes

API Reference

4-25

4.2.1.5 XDM1_SingleBufDesc

║ Description

This structure defines the single buffer descriptor for input and output
buffers in XDM 1.0 IVIDENC1.

║ Fields

Field Data type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to a buffer address

bufSize XDAS_Int32 Input Size of buffer in bytes

accessMask XDAS_Int32 Input If the buffer was not accessed by the algorithm
processor (for example, it was filled through
DMA or other hardware accelerator that does
not write through the algorithm CPU), then bits
in this mask should not be set.
Note: This feature is not supported in this
version of H264 Encoder.

4.2.1.6 IVIDEO_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

width XDAS_Int32 Input Padded width of the video data

*bufs[XDM_MAX_IO_BUF
FERS]

XDAS_Int8 Input Pointer to the vector containing buffer
addresses

bufSizes[XDM_MAX_IO_
BUFFERS]

XDAS_Int32 Input Size of each buffer in bytes

numBufs XDAS_Int32 Input Number of buffers

API Reference

4-26

4.2.1.7 IVIDEO1_BufDescIn

║ Description

This structure defines the buffer descriptor for input video buffers.
║ Fields

Field Data type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers in bufDesc[]

frameWidth XDAS_Int32 Input Width of the video frame.

Note: It will be same as inputWidth for
width multiple of 16. For inputWidth non-
multiple of 16, application will set this field to
next multiple of 16.

frameHeight XDAS_Int32 Input Height of the video frame.

Note:
Progressive: It will be same as
inputHeight for height multiple of 16.For
inputHeight non-multiple of 16,
application will set this field to next multiple
of 16.

Interlaced: It will be same as
inputHeight for height multiple of 32.For
inputHeight non-multiple of 32,
application will set this field to next multiple
of 32.

framePitch XDAS_Int32 Input Frame pitch used to store the frame.
This field is not used by the encoder.

bufDesc[XDM_MAX_IO_B
UFFERS]

XDM1_Singl
eBufDesc

Input Picture buffers

4.2.1.8 IVIDENC1_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Data type Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

API Reference

4-27

Field Data type Input/
Output

Description

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function.

*control XDAS_Int32 Input Pointer to the control() function.

4.2.1.9 IVIDENC1_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.
Default size is size of IH264VENC_PARAMS
structure.

encodingPreset XDAS_Int32 Input Encoding preset. See
XDM_EncodingPreset enumeration for
details..
Default value = XDM_USER_DEFINED.

rateControlPreset XDAS_Int32 Input Rate control preset. See
IVIDEO_RateControlPreset
enumeration for details.
Default value = IVIDEO_STORAGE.

maxHeight XDAS_Int32 Input Maximum video height to be supported in
pixels.
Default value = 1088

maxWidth XDAS_Int32 Input Maximum video width to be supported in
pixels.
Default value = 1920.

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.
Default value = 120000.

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second.
Default value = 50000000.

API Reference

4-28

Field Data type Input/
Output

Description

dataEndianness XDAS_Int32 Input Endianness of input data. See
XDM_DataFormat enumeration for details.
Default value = XDM_BYTE.

maxInterFrameInterv
al

XDAS_Int32 Input Distance from I-frame to P-frame:
 1 - If no B-frames
 2 - To insert one B-frame

This parameter is not supported as B-frames
are not supported. Set value = 1

inputChromaFormat XDAS_Int32 Input Input chroma format. See
XDM_ChromaFormat and
IH264VENC_ChromaFormat enumeration
for details.
Set value as = XDM_YUV_420SP. Other
values are not supported.

inputContentType XDAS_Int32 Input Input content type. See
IVIDEO_ContentType enumeration for
details.
Default value = IVIDEO_PROGRESSIVE.

reconChromaFormat XDAS_Int32 Input Chroma formats for the reconstruction
buffers.
Set value as = XDM_YUV_420SP. Other
values are not supported.

Note:

encodingPreset: There are no tools which can cause perfromance
difference. Hence, XDM_HIGH_QUALITY and XDM_HIGH_SPEED will give
the same bitstream/perfromance.

The maximum video height and width supported are 2048 and 2048
pixels respectively.

For the supported maxBitRate values, see Annex A in ISO/IEC 14496-
10.

The following fields of IVIDENC1_Params data structure are level
dependent:

 maxHeight
 maxWidth
 maxFrameRate
 maxBitRate

To check the values supported for maxHeight and maxWidth use the
following expression:

maxFrameSizeinMbs >= (maxHeight*maxWidth) / 256;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported
maxFrameSizeinMbs values.

API Reference

4-29

For example, consider you have to check if the following values are
supported for level 2.0:

 maxHeight = 480

 maxWidth = 720

The supported maxFrameSizeinMbs value for level 2.0 as per Table A.1
– Level Limits is 396.

Compute the expression as:

maxFrameSizeinMbs >= (480*720) / 256

The value of maxFrameSizeinMbs is 1350 and hence the condition is
not true. Therefore, the above values of maxHeight and maxWidth are
not supported for level 2.0.

The maximum value for maxFrameRate and maxBitRate is 120
(120000) and 50000000 respectively.

Use the following expression to check the supported maxFrameRate
values for each level:

maxFrameRate <= maxMbsPerSecond / FrameSizeinMbs;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported
values of maxMbsPerSecond.

Use the following expression to calculate FrameSizeinMbs:

FrameSizeinMbs = (inputWidth * inputHeight) / 256;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported
values of Max Video bit-rate.

During creation time, these values are checked against the maximum
values defined for the encoder. If the specified values exceed or do not
match the limit supported by encoder, the encoder continues to encode
with the next higher supported level. Since the actual height and width
are specified later using control operation with dynamic parameters, the
level based checking is done during the control operation.

API Reference

4-30

4.2.1.10 IVIDENC1_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
Default value is size of
IVIDENC1_DynamicParams structure.

inputHeight XDAS_Int32 Input Height of input frame in pixels. Input height can
be changed before start of encoding within the
limits of maximum height set in creation phase.
inputHeight must be multiple of two.
Minimum height supported is 128. Irrespective of
interlaced or progressive content, input height
should be given as frame height. For any height
lesser than 128 and greater than 96, you can use
version 1.1, backward compatible mode See
section 1.5 for details

Note:

Progressive: When the input height is a non-
multiple of 16, the encoder expects the
application to pad the input frame to the nearest
multiple of 16 at the bottom of the frame. In this
case, the application should set input height to
actual height but should provide the padded
input YUV data buffer to encoder. The encoder
then sets the difference of the actual height and
padded height as crop information in the bit-
stream.

Interlaced: When the input height is a non-
multiple of 32, the encoder expects the
application to pad the input frame to the nearest
multiple of 32 at the bottom of the frame. In this
case, the application should set input height to
actual height but should provide the padded
input YUV data buffer to encoder. The encoder
then sets the difference of the actual height and
padded height as crop information in the bit-
stream.

Default value = 576.

API Reference

4-31

Field Data type Input/
Output

Description

inputWidth XDAS_Int32 Input Width of input frame in pixels. Input width can be
changed before the start of encoding within the
limits of maximum width set in creation phase.
inputWidth must be multiples of two.
Minimum width supported by encoder is 320.
For any width lesser than 320 and greater than
128, you can use version 1.1, backward
compatible mode. See section 1.5 for details.

Note: When the input width is a non-multiple of
16, the encoder expects the application to pad
the input frame to the nearest multiple of 16 to
the right of the frame. In this case, application
should set inputWidth to actual width but
should provide the padded input YUV data buffer
to encoder. The encoder then sets the difference
of the actual width and padded width as crop
information in the bit-stream.

Default value = 720

refFrameRate XDAS_Int32 Input Reference or input frame rate in fps * 1000. For
example, if the frame rate is 30, set this field to
30000.
This parameter is not supported, should be set
equal to targetFrameRate.
Default value = 25000

targetFrameRate XDAS_Int32 Input Target frame rate in fps * 1000. For example, if
the frame rate is 30, set this field to 30000.
Default value = 25000. Frame rate should be in
multiple of 0.5 fps.
Default value = 25000

targetBitRate XDAS_Int32 Input Target bit-rate in bits per second. For example, if
the bit-rate is 2 Mbps, set this field to 2000000.
Default value = 10000000.

intraFrameInter
val

XDAS_Int32 Input Interval between two consecutive intra frames.
 0: First frame will be intra coded
 1: No inter frames, all intra frames
 2: Consecutive IPIPIP
 3: 1PPIPPIPP or IPBIPBIPB, and so on

Default value = 30

generateHeader XDAS_Int32 Input Encode entire access unit or only header. See
XDM_EncMode enumeration for details.
Default value = XDM_ENCODE_AU.

API Reference

4-32

Field Data type Input/
Output

Description

captureWidth XDAS_Int32 Input Capture width parameter enables the application
to provide input buffers with different line width
(pitch) alignment than input width.

For progressive content, if the parameter is set
to:

 0 - Encoded input width is used as pitch.
 >= encoded input width - capture width is

used as pitch.
For interlaced content, captureWidth should
be equal to the pitch/stride value needed to move
to the next row of pixel in the same field.
Default value = 0

forceFrame XDAS_Int32 Input Force the current (immediate) frame to be
encoded as a specific frame type.

Only the following values are supported:

 IVIDEO_NA_FRAME - No forcing of any
specific frame type for the frame.

 IVIDEO_I_FRAME - Force the frame to be
encoded as I frame.

 IVIDEO_IDR_FRAME - Force the frame to
be encoded as an IDR frame.

Default value = IVIDEO_NA_FRAME.

interFrameInter
val

XDAS_Int32 Input Number of B frames between two reference
frames; that is, the number of B frames between
two P frames or I/P frames.
This parameter is not supported. It should be set
to 0.

mbDataFlag XDAS_Int32 Input Flag to indicate that the algorithm should use MB
data supplied in additional buffer within inBufs.
This parameter is not supported. It should be set
to 0.

Note:

The following are the limitations on the parameters of
IVIDENC1_DynamicParams data structure:

 inputHeight <= maxHeight

 inputWidth <= maxWidth

 refFrameRate <= maxFrameRate

 targetFrameRate <= maxFrameRate

 targetFrameRate should be multiple of 500

 The value of the refFrameRate and targetFrameRate
should be the same

API Reference

4-33

 APIs refFrameRate and targetFrameRate were initially
maintained (XDM API perspective) to enable frame rate
conversion by codec. For example, you could set
refFrameRate = 30000 and targetFrameRate = 24000. This
implies that the encoder will get input @ 30frames per sec and
will convert frame rate from 30 to 24 while encoding. Hence, the
encoded bit-stream will have only 24 frames of data per sec.

 DM365/DM368 implementation of refFrameRate and
targetFrameRate: This feature is not supported in
DM365/DM368. Hence, we make refFrameRate =
targetFrameRate. For example:
Capturing at 15 fps and required bitrate is 768kbps, set
refFrameRate = targetFrameRate = 15000 and
targetBitrate = 768000
Capturing at 30fps and required bitrate is 1mbps, set
refFrameRate = targetFrameRate = 30000 and
targetBitrate = 1000000
Capturing at 30fps to encode at 15fps with bitrate of 768kbps,
Convert frame rate from 30 to 15 in application and then set
refFrameRate = targetFrameRate = 15000 and
targetBitrate = 768000

 targetBitRate <= maxBitRate

 The inputHeight and inputWidth must be multiples of two.

 The inputHeight, inputWidth, and targetFrameRate
should adhere to the standard defined level limits. For an
incorrect level, the encoder tries to match the best level for the
parameters provided. However, if it exceeds level 5.0, an error is
reported. As per the requirement, level limit can be violated for
targetBitRate.

 When inputHeight/inputWidth are non-multiples of 16,
encoder expects the application to pad the input frame to the
nearest multiple of 16 at the bottom/right of the frame. In this
case, application sets the inputHeight/inputWidth to the
actual height/actual width; however, it should provide
the padded input YUV data buffer to the encoder.

 When inputWidth is non-multiple of 16, the encoder expects
capture width as padded width(nearest multiple of 16). If the
capture width is 0, then the capture width is assumed to be the
padded width. In all other cases, the capture width provided
through input parameter is used for input frame processing.

 For out of bound and invalid parameters, encoder returns with
fatal error.

 intraFrameInterval is used to signal the I frame interval in
H.264. There is one more field in extended dynamic params
called idrFrameInterval, which specifies the IDR frame
interval for H.264. With each IDR frame, SPS and PPS is sent.
The first frame of the sequence is always an IDR frame

API Reference

4-34

4.2.1.11 IVIDENC1_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm
instance object.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

inputID XDAS_Int32 Input Identifier to attach with the corresponding
encoded bit stream frames.
This is useful when frames require buffering (for
example, B frames), and to support buffer
management. When there is no re-ordering,
IVIDENC1_OutArgs::outputID will be the
same as this inputID field.
Zero (0) is not a supported inputID. This value
is reserved for cases when there is no output
buffer provided.

topFieldFirstFlag XDAS_Int32 Input Flag to indicate the field order in interlaced
content.
Valid values are XDAS_TRUE and XDAS_FALSE.
This field is only applicable to the input image
buffer. This field is only applicable for interlaced
content and not progressive. Currently, supported
value is XDAS_TRUE.

API Reference

4-35

4.2.1.12 IVIDENC1_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

data XDM1_SingleBuf
Desc

Input/Out
put

Buffer descriptor for data passing

bufInfo XDM_AlgBufInfo Output Input and output buffer information. See
XDM_AlgBufInfo data structure for
details.

4.2.1.13 IVIDENC1_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

bytesGenerated XDAS_Int32 Output The number of bytes generated.

encodedFrameType XDAS_Int32 Output Frame types for video. See
IVIDEO_FrameType enumeration for details.
Following values are only supported

 IVIDEO_I_FRAME
 IVIDEO_IDR_FRAME
 IVIDEO_P_FRAME
 IVIDEO_II_FRAME
 IVIDEO_PP_FRAME

inputFrameSkip XDAS_Int32 Output Frame skipping modes for video. See
IVIDEO_SkipMode enumeration for details.

API Reference

4-36

Field Data type Input/
Output

Description

outputID XDAS_Int32 Output Output ID corresponding to the encoder buffer.
This can also be used to free the corresponding
image buffer for further use by the client
application code.
In this encoder, outputID is set to
IVIDENC1_InArgs::inputID.

encodedBuf XDM1_SingleBuf
Desc

Output The encoder fills the buffer with the encoded bit-
stream. In case of sequences with only I and P
frames, these values are identical to outBufs
passed in IVIDENC1_Fxns::process()
The encodedBuf.bufSize field returned
corresponds to the actual valid bytes available in
the buffer.
The bit-stream is in encoded order.
The outputId and encodedBuf together
provide information related to the corresponding
encoded image buffer.

reconBufs IVIDEO1_BufDes
c

Output Pointer to reconstruction buffer descriptor.

API Reference

4-37

4.2.2 H.264 Encoder Data Structures

This section includes the following H.264 Encoder specific extended data
structures:

 IH264VENC_Params

 IH264VENC_DynamicParams

 IH264VENC_InArgs

 IH264VENC_Status

 IH264VENC_OutArgs

 IH264VENC_Fxns

4.2.2.1 IH264VENC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for a H.264 Encoder instance object.
The creation parameters are defined in the XDM data structure,
IVIDENC1_Params.

║ Fields

Field Data type Input/
Output

Description

videncParams IVIDENC1_Params Input See IVIDENC1_Params data structure for
details.
The size parameter in videncParams is
set to size of IH264VENC_Params
structure by default while using extended
parameters.

profileIdc XDAS_Int32 Input Profile identification for the encoder.
The current version supports High Profile.
The value must be set to 66(Base line
profile), 77(main profile), 100(high profile).
Default value = 100.

levelIdc XDAS_Int32 Input Level identification for the encoder. See
IH264VENC_Level enumeration for
details.
Default value = IH264VENC_LEVEL_40.

aspectRatioX XDAS_Int32 Input X scale for Aspect Ratio.
The value should be greater than 0 and co-
prime with AspectRatioY.
Default value = 1

aspectRatioY XDAS_Int32 Input Y scale for Aspect Ratio
The value should be greater than 0 and co-
prime with AspectRatioX.
Default value = 1.

API Reference

4-38

Field Data type Input/
Output

Description

pixelRange XDAS_Int32 Input Range for the luma and chroma pixel values
 0 – Restricted Range
 1 – Full Range (0-255)

Default value = 1

meAlgo XDAS_Int32 Input This field is reserved

timeScale XDAS_Int32 Input Time resolution value for Picture Timing
Information
This should be greater than or equal to
frame rate in fps.
See Appendix A for more details.
Default value = 150.

numUnitsInTicks XDAS_Int32 Input Units of Time Resolution constituting the
single Tick
See Appendix A for more details.
Default value = 1.

enableVUIparams XDAS_Int32 Input Flag for Enable VUI Parameters

 Bit 0: Controls VUI params insertion in
SPS. If 0 -> VUI is not inserted in SPS,
1-> VUI is inserted in SPS. The VUI
message is generated internally by the
codec based on RC and some other
API parameters

 Bit 1: Controls IDR frame insertion in
case of RC parameter change, If 0 ->
IDR is inserted with change in RC
parameters, 1-> IDR is not inserted with
change in RC parameters

Note:
If enableBufSEI = 1, VUI param
insertion condition is enabled i.e. Bit 0 is
assumed to be 1. This enables insertion of
VUI param as per above condition set

entropyMode XDAS_Int32 Input Flag for Entropy Coding Mode
 0 – CAVLC
 1 – CABAC

Default value = 1.
This tool is supported only in Main Profile
and High Profile (profileIdc = 77 and
100)

transform8x8FlagIn
traFrame

XDAS_Int32 Input Flag for 8x8 Transform for I frame
 0 – Disable
 1 – Enable

Default value = 1.
This tool is supported only in High Profile
(profileIdc = 100)

API Reference

4-39

Field Data type Input/
Output

Description

transform8x8FlagIn
terFrame

XDAS_Int32 Input Flag for 8x8 Transform for P frame
 0 – Disable
 1 – Enable

Default value = 0.
This tool is supported only in High Profile
(profileIdc = 100)

seqScalingFlag XDAS_Int32 Input Flag for use of Sequence Scaling Matrix
 0 – Disable
 1 – Auto
 2 – Low
 3 – Moderate
 4 – Reserved

Default value = 1.
This tool is supported only in High Profile
(profileIdc = 100)
Currently the behavior for input value of 4
will be same as 3 i.e. Moderate SM.

disableHDVICPevery
Frame

XDAS_Int32 Input Reserved

encQuality XDAS_Int32 Input Flag for Encoder setting
 0 – version 1.1, backward compatible

mode,
 2 – High speed mode(This is same as
encodingPreset =
XDM_HIFG_SPEED).

Default value = 2
.

unrestrictedMV XDAS_Int32 Input This field is reserved.
UMV is always ON in the encoder.

enableARM926Tcm XDAS_Int32 Input Flag for enabling/disabling usage of
ARM926 TCM:

 1 – Uses ARM926 TCM
 0 – Does not use ARM926 TCM

Default value = 0

This control is only active for
encodingPreset =
XDM_USER_DEFINED and encQuality
= 0, For other encoder preset and mode,
there is no user control over it. It is internally
set to 1 and ARM926 TCM is always used.

enableDDRbuff XDAS_Int32 Input Flag for enabling/disabling usage of DDR
instead of IMCOP buffers.

 1 – Uses DDR instead of VICP buffers.
 0 – Use VICP buffers.

Default value = 0

API Reference

4-40

Field Data type Input/
Output

Description

sliceMode XDAS_Int32 Input Mode for specifying slice size
 0 – No multi-slice
 1 – Reserved.
 2 – number of MBs per slice
 3 – number of Mb rows per slice

Default value = 0

outputDataMode XDAS_Int32 Input Mode for specifying low latency interface
 0 – Low latency enabled. Codec

interface at NAL encoding granularity
 1 – Low latency disabled. Codec

interface at frame encoding level

sliceFormat XDAS_Int32 Input Output Nal unit encoding format
 0 – Output data in NAL stream format
 1 – Output data in Byte stream format

Note:

 Default values of extended parameters are used when size fields are
set to the size of base structure IVIDENC1_Params.

 aspectRatio and pixelRange information is included in the bit-
stream only when enableVUIparams is set to 1.

 When enableVUIparams is set to 2, IDR frame is not inserted
when any of the following parameters are changed dynamically.
i. Framerate

ii. Bitrate

iii. MaxDelay

iv. RC Algorithm.

 When enableVUIparams is set to 0 or 1, an IDR frame containing
SPS and PPS parameter is inserted in the stream.

 The behavior of aspectRatioX and aspectRatioY is similar to
what is defined in the section E.1.3 of H.264 standard. You need to
specify X and Y values. If it matches with the value as provided in
table E-1, aspect_ratio_idc is sent in the streams. If it does not
match, sar_width and sar_height is sent explicitly with
aspect_ratio_idc set to 255(extended SAR)

 If the level is not set appropriately, the encoder tries to fit a correct
level. However, if it exceeds level 5.0, an error is reported.

 If interlace encoding is enabled for levels less than 2,1 or level more
than level 4.1 encoder will return fatal error during instance creation.

 When encodingPreset = XDM_HIGH_SPEED/
XDM_HIGH_QULAITY or encQuality = 2, Perceptual rate control
feature is disabled in the current encoder version:

 Types of Multiple Slices supported in different modes:

 Version 1.1, Backward comptible mode(encQuality = 0):

API Reference

4-41

Multiple slices based on number of MBs per slice and number of
rows per slice.

 Platinum mode Mode(encQuality = 2): Multiple slices based
on number of rows per slice.

4.2.2.2 IH264VENC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for a H.264 Encoder instance object.
The run-time parameters are defined in the XDM data structure,
IVIDENC1_DynamicParams.

║ Fields

Field Data type Input/
Output

Description

videncDynamicPara
ms

IVIDENC1_Dy
namicParams

Input See IVIDENC1_DynamicParams data structure
for details.
The size parameter of DynamicParams is set to
size of IVIDENC1_DynamicParams structure by
default while using extended parameters.

intraFrameQP XDAS_Int32 Input Quantization Parameter (QP) of I-frames in fixed QP
mode. Valid value is 0 to 51. It is useful only when:

 rateControlPreset of
IVIDENC1_Params is equal to
IVIDEO_NONE.

 RcAlgo = 2 (Fixed QP)
 targetBitRate = 0

Default value = 28

interPFrameQP XDAS_Int32 Input Quantization Parameter (QP) of P-frames in fixed
QP mode. Valid value is 0 to 51. It is useful only
when:

 rateControlPreset of
IVIDENC1_Params is equal to
IVIDEO_NONE.

 RcAlgo = 2 (Fixed QP)
 targetBitRate = 0

Default value = 28

initQ XDAS_Int32 Input Initial Quantization (QP) for the first frame. Valid
values include -1 and any value between 0 to 51.
The parameter is applicable only when rate-control
is enabled. Should be set based on the target bit-
rate.
Default value = 28
Recommended value = -1. When -1 is used,
encoder calculates initial Qp based on bit rate, frame
rate and input resolution. This calculated Qp value is
used for first frame.

API Reference

4-42

Field Data type Input/
Output

Description

rcQMax XDAS_Int32 Input Maximum value of Quantization Parameter (QP) to
be used while encoding. Valid value is 0 to 51. The
value for rcQMax should not be less than rcQMin.
The parameter is applicable only when rate-control
is enabled.
Default value = 45

rcQMin XDAS_Int32 Input Minimum value of Quantization Parameter (QP) to
be used while encoding. Valid value is 0 to 51. The
value for rcQMin should not be greater than
rcQMax. The parameter is applicable only when
rate-control is enabled.
Default value = 0.

rcQMaxI XDAS_Int32 Input Maximum value of Quantization Parameter (QP) to
be used while encoding Intra Frame. Valid value is 0
to 51. The value for rcQMaxI should not be less
than rcQMinI. The parameter is applicable only
when rate-control is enabled.
Default value = 42

rcQMinI XDAS_Int32 Input Minimum value of Quantization Parameter (QP) to
be used while encoding Intra Frame. Valid value is 0
to 51. The value for rcQMinI should not be
greater than rcQMaxI. The parameter is applicable
only when rate-control is enabled.
Default value = 0.

airRate XDAS_Int32 Input Parameter for forced Intra MB insertion in P-frames.
 0 – No forced Intra MBs
 n > 0 – number of forced Intra MB in each

frame.
Default value = 0.
This feature is not supported for interlaced content.

sliceSize XDAS_Int32 Input The interpretation of sliceSize depends on
sliceMode value.

See the note at end of 4.2.2.2 for details on
sliceSize range and interpretation.

lfDisableIdc XDAS_Int32 Input Option to enable or disable loop filter
 0 – Loop Filter Enable
 1 – Loop Filter Disable
 2 – Disable Filter across slice boundaries

Default value = 0

rcAlgo XDAS_Int32 Input Option to specify the type of Rate Control Algorithm
 0 – CBR
 1 – VBR
 2 – Fixed QP

CBR Rate Control algorithm is not supported for
interlaced encoding and will be automatically
disabled by encoder.
Default value = 1

API Reference

4-43

Field Data type Input/
Output

Description

maxDelay XDAS_Int32 Input Maximum acceptable delay in milliseconds for rate
control.

 Min Limit: No minimum value check
 Max Limit : 10000 ms

It is recommended to use value greater than 100
ms.
Typical value is 1000 ms.
By default, this is set to 2000 ms at the time of
encoder object creation.

intraSliceNum XDAS_Int32 Input This field is reserved

meMultiPart XDAS_Int32 Input This field is reserved

enableBufSEI XDAS_Int32 Input Flag for enabling buffering period SEI message
 0 – Disable
 1 – Enable

Default value = 0
Buffering period SEI insertion is not supported for
interlaced content

enablePicTimSEI XDAS_Int32 Input Flag for enabling picture timing SEI message
 0 – Disable
 1 – Enable

This parameter is disabled if EnableBufSEI is
disabled.
Default value = 0
Picture Timing SEI insertion is not supported for
interlaced content

intraThrQF XDAS_Int32 Input This field is reserved.

perceptualRC XDAS_Int32 Input Flag for enabling perceptual QP
modulation of MBs

 0 – Disable
 1 – Enable

Default value = 1
This feature is only present if encQuality = 0
under encodingPreset =
XDM_USER_DEFINED. For XDM_HIGH_SPEED and
XDM_HIGH_QUALITY, this feature is disabled.

PRC is disable automatically for maxDelay<1000
and rcAlgo = CBR

idrFrameInterval XDAS_Int32 Input Interval between two consecutive IDR frames
 0: first frame will be IDR coded
 1: No inter frames, all IDR frames
 2: Consecutive IDR P IDR P
 3: IDR P P IDR P P IDR .. or IDR P B IDR P B

IDR P B ….and so on
Default value = 0.

API Reference

4-44

Field Data type Input/
Output

Description

mvSADoutFlag XDAS_Int32 Input This flag enables dumping of MV and SAD value of
the encoded stream. If the flag is enabled,
XDM_GETBUFINFO call will request for one extra
buffer to dump the MV and SAD. See note for
details.
Default value = 0.

resetHDVICPeveryF
rame

XDAS_Int32 Input Flag to reset HDVICP at the start of every frame that
is encoded. This is useful for multi-channel and
multi-format encoding.

 1 – ON
 0 – OFF

Default value = 1.

If this flag is set, H.264 encoder assumes that the
memories of HDVICP was overwritten by some
other codec or by other instance of same codec with
different quality settings between process call and
hence reloads the code and data.

For example : Application will set this flag to 1 if
running another instance of different codec like
H264 decoder or if running another H264 encoder
instance with different quality setting in
encQuality or encodingPreset.

However, application can set this flag to 0 for better
performance if it runs multiple instances of H264
encoder with same quality settings in encQuality
and encodingPreset.

enableROI XDAS_Int32 Input Flag to enable/disable ROI coding.
 1 – enable ROI coding.
 0 – disable ROI coding.

Default value = 0.

This flag will be automatically disabled when
rcAlgo = Fixed QP.

API Reference

4-45

Field Data type Input/
Output

Description

metaDataGenerateCo
nsume

XDAS_Int32 Input Flag to enable/disable metaData Consume and
generate.

 0: Not used.
 1: Generate metaData in the current instance.
 2: Consume metaData in the current instance.
 3: metaData genenrated but not yet

consumed.
Default value = 0.

When this flag value is set to 1, the encoder will
generate the metadata and store the frame related
information in the FrameInfo_Interface structure.
This structure is then passed to the application.

If the flag value is 2 then the current encoder
instance will use the metadata generated by other
encoder to improve/customise the encoding
operation.

If the flag value is 3 the metaData is generated by
the low resolution encoder but not yet consumed by
high resolution encoder. (See Appendix D for
detailed usage).

disableMVDCostFac
tor

XDAS_Int32 Input Reserved

putDataGetSpaceFxn IH264VENC_T
I_DataSyncP
utGetFxn

Input Pointer to callback module required to enable low
latency feature

dataSyncHandle IH264VENC_T
I_DataSyncH
andle

Input Handle to DataSync descriptor

Note:

 enablePicTimSEI values are used only when enableBufSEI is set
to 1.

 rcAlgo values are used only when IVIDENC1_Params -
>RateControlPreset = IVIDEO_USER_DEFINED.

 rcQMax, rcQMin, initQ, and maxDelay values are used only when
the encoder does not run in fixed QP mode.

 Generally idrFrameInterval will be larger than
intraFrameInterval. For example, idrFrameInterval = 300

API Reference

4-46

and intraFrameInterval = 30. This means that at every 30th
frame, there will be an I frame. But at every 300th frame, an IDR
frame will be placed instead of I frame. IDR frame is used for
synchronization.

 The MV and SAD is dumped in the outBuf. The extra buffer is
requested during XDM_GETBUFINFO call. If multiple slice is on, then
MV-SAD information is in the index 2 of the buffers pointed by
XDM_BufDesc *outBufs and index 1 is for packet size information.
If multiple slice is off, the MV-SAD is dumped in index 1 of buffer
pointers. Index 0 is always used for bit-stream data. MV SAD
information is in the following format:

 Word0: MVy[bit 31-16]:MVx[bit 15-0]

 Word1: SAD [bit 31-0]

For motion vector and SAD, the top left partition is used in case
multiple MV is enabled.

 Regions where the viewer pays more attention to are called regions
of interest (ROI). In such scenarios it is important that the ROI areas
are reproduced as reliable as possible since they contribute
significantly towards the overall quality and perception of the video.
This is achieved by assigning higher number of bits to the ROI areas
when compared to non-ROI areas.

 If the current frame at low resolution encoder is encoded as IDR/I
frame then no scene change information is passed to high resolution
encoder.

 Forcing intra MBs when airRate>0 is done as explained below.

Randomized AIR is used as intra refresh startegy. In this case
atlease airRate number of MBs in a frame will be set as intra,
except for the last module. There could be more than airRate MBs
as intra because there could be macroblocks coded as intra due to
intra/inter mode decision.

Consider that there are 396 MBs in a frame and airRate = 10. So
after 39 frames 390 MBs will be refreshed. So for 40th frame only 6
MBs get refreshed ti intra. So for all frames atlease airRate number
of MBs in a frame will not be Intra.

For encQuality = 0, when AIR is ON, contrained intra prediction
gets used. In other modes of operation, contrained intra prediction is
not used when AIR is ON.

 If sliceMode = 0 then sliceSize value is ignored. Entire frame will
be encoded as a single slice.

 SliceMode = 1 is Reserved
 If SliceMode = 2 then sliceSize indicates:

Size of each slice in number of MBs.
• 0 – Single Slice per Frame
• >0 – Multiple Slices with each slice having MBs <= sliceSize.
Default value = 0

This feature is only present when encQuality = 0 .
Slicesize value should be multiple of 2 always. Value of slice size is limited
by total number of MBs in frame.

In case of inputs having odd multiple of MBs in a row, an virtual MB

API Reference

4-47

is considered, For example, for an input with 11MBs/row, if user
wants 1row/slice;then sliceSize should be 12(11+1virtualMB=12).
User should take care of accounting this virtual MB while setting
sliceSize.

 If SliceMode = 3 then sliceSize indicates:
Size of each slice in number rows per slice.
• 0 – Single Slice per Frame
• >0 – Multiple Slices with each slice having rows = sliceSize.
Default value = 0

This feature is supported in all modes.
Value of slice size is limited by total number of rowss in frame.

4.2.2.3 IH264VENC_InArgs

║ Description

This structure defines the run-time input arguments for H.264 Encoder
instance object.

║ Fields

Field Data type Input/
Output

Description

videncInArgs IVIDENC1_InArgs Input See IVIDENC1_InArgs data structure for
details.

timeStamp XDAS_Int32 Input Time stamp value of the frame to be placed in
bit stream. This should be integral multiple of
TimerResolution/ (frame rate in fps).
Initial time stamp value (for first frame) should
be 0.
Default is calculated as Frame number *
TimerResolution/ (Frame rate in fps).
See Appendix A for more details.

insertUserData XDAS_Int32 Input Flag to enable insertion of user data as part of
SEI unregistered user data

lengthUserData XDAS_Int32 Input Length of user data to be inserted in the bit-
stream. The codec will create space in bit-
stream of the given length for user data
insertion.

roiParameters ROI_Interface Input This is to pass the ROI related data to the
algorithm.

See ROI_Interface data structure under
section 4.3 for details.

numOutputDataUn
its

XDAS_Int32 Input This specifies number of NAL units which
encoder will encode before triggering call
back API . For details, See section 4.5

API Reference

4-48

Note:

TimeStamp is included only when IH264VENC_DynamicParams-
>EnablePicTimSEI is set to 1.

4.2.2.4 IH264VENC_Status

║ Description

This structure defines parameters that describe the status of the H.264
Encoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IVIDENC1_Status.

║ Fields

Field Data type Input/
Output

Description

videncStatus IVIDENC1_Status Input/Output See IVIDENC1_Status data structure for
details.

4.2.2.5 IH264VENC_OutArgs

║ Description

This structure defines the run-time output arguments for the H.264 Encoder
instance object.

║ Fields

Field Data type Input/
Output

Description

videncOutArgs IVIDENC1_OutAr
gs

Output See IVIDENC1_OutArgs data structure for
details.

numPackets XDAS_Int32 Output Total number of packets/slices in the encoded
frame. The size of the packet is part of outBufs
memory of the process call.

offsetUserDat
a

XDAS_Int32 Output This is the offset in the bit-stream for user data
insertion.

The offset (bytes) is with respect to the output
buffer where the encoded frame is dumped after
the process() call. Application should move to
this offset and place the user data of
lengthUserData.

Codec only adds placeholder in bit-stream for user
data insertion. Actual user data insertion has to be
done by the application.

API Reference

4-49

4.2.2.6 IH264VENC_Fxns

║ Description

This structure defines all of the operations for the H.264 Encoder instance
object.

║ Fields

Field Data type Input/
Output

Description

ividenc IVIDENC1_Fxns Output See IVIDENC1_Fxns data structure for
details.

API Reference

4-50

4.3 H.264 Encoder ROI specific Data Structures and Enumerations

This section includes the following H.264 Encoder ROI specific structures
and enumerations:

 XDM_Point structure.

 XDM_Rect structure.

 ROI_type enumeration.

 ROI_Interface structure.

4.3.1.1 XDM_Point

║ Description

This structure defines all the fields required to specify location of point. This
will be used to specify X and Y co-ordinates of given point.

║ Fields

Field Data type Input/
Output

Description

x XDAS_Int32 Input This will specify the X co-ordinate of a given
point.

y XDAS_Int32 Input This will specify the Y co-ordinate of a given
point.

4.3.1.2 XDM_Rect

║ Description

This structure defines all the fields required to specify a rectangle. This will
be used to specify top left and bottom right co-ordinates of a given ROI.

║ Fields

Field Data type Input/
Output

Description

topLeft XDM_Point Input This will specify the X and Y co-ordinate of top
left point of given ROI.

See XDM_Point data structure for details.

API Reference

4-51

Field Data type Input/
Output

Description

bottomRight XDM_Point Input This will specify the X and Y co-ordinate of
bottom right point of given ROI.

See XDM_Point data structure for details.

4.3.1.3 ROI_type

║ Description

This enumeration defines all the different types of ROI.
║ Fields

Enumeration Class Symbolic Constant Name Description

FACE_OBJECT Type of ROI is FACE OBJECT

BACKGROUND_OBJECT Type of ROI is BACKGROUND OBJECT

FOREGROUND_OBJECT Type of ROI is FOREGROUND OBJECT

DEFAULT_OBJECT Type of ROI is DEFAULT OBJECT

ROI_type

PRIVACY_MASK Type of ROI is PRIVACY MASK

4.3.1.4 ROI_Interface

║ Description

This structure defines all the fields required to send ROI data to the
algorithm.

Field Data type Input/
Output

Description

listROI
[MAX_ROI]

XDM_Rect Input For a given ROI, this gives the X and Y co-
ordinates of the top left and bottom right
points.

See XDM_Rect data structure for details.

roiType
[MAX_ROI]

ROI_type Input This field specifies the type of ROI.

Codec may take some special action
depending on type of ROI.

See ROI_type enumeration for details.

API Reference

4-52

Field Data type Input/
Output

Description

numOfROI XDAS_Int32 Input Number of ROI limited by MAX_ROI.

roiPriority
[MAX_ROI]

XDAS_Int32 Input Priority of the given ROI.
Valid values include all integers between -4
and 4. .

A higher value means that more importance
will be given to the ROI compared to other
regions. In other words, it determines the
number of bits given to ROI.

Note:

 In current implementation, MAX_ROI supported is 5.

 There is support for different priorities for different ROIs in this
version of H264 Encoder. But ROIs of same ROI_type should have
same priority.

 Overlapping of ROIs of same ROI_type is allowed in this release.

 ROI of type PRIVACY_MASK is not supported in this version of H264
Encoder.

 ROI can be of any type as mentioned in ROI_type. If the ROI is
detected as FACE_OBJECT, then a guard band is added around it. For
all other ROI types no guard band is added.

API Reference

4-53

4.4 H264 Encoder Two Pass Encoder data structure

In simple two pass encoding following data structures have been used

 MBinfo Structure

 MBRowInfo Structure

 FrameInfo_Interface Structure

4.4.1 MBinfo

║ Description

This structure is used to store MB information. It contains following
elements.

║ Fields

Field Data type Input/
Output

Description

numBitsMB XDAS_UInt16 Output Number of bits to encode MB

mbCodingMode XDAS_UInt8 Output MB coding mode Inter or Intra

mbQP XDAS_UInt8 Output QP of MB

4.4.2 MBRowinfo

║ Description

This structure contains buffer description of MB row related parameters.
║ Fields

Field Data type Input/
Output

Description

gmvVert XDAS_UInt32 Output GMV information per row.

API Reference

4-54

4.4.3 Frameinfo_Interface

║ Description

This Structure contains buffer description of frame related Parameters
which are pass from low resolution encoder to high resolution encoder.

║ Fields

Field Data type Input/
Output

Description

Width XDAS_UInt16 Output Width of the frame in pixels.

Height XDAS_UInt16 Output Height of the frame in pixels.

sceneChangeFlag XDAS_UInt32 Output Flag to indicate scene change observed at
low-resolution encoder level.

bitsPerFrame XDAS_UInt32 Output Number of bits used to encode frame by low-
resolution encoder.

frameRate XDAS_UInt32 Output Frame rate per second.

Bitrate XDAS_UInt32 Output Target bit rate in bps.

mvSADpointer XDAS_UInt32 *

Output Pointer to MVSAD of all the MBs in a frame.

mbComplexity MBinfo * Output Pointer to MB information of all the MBs in a
frame.

gmvPointerVert MBRowinfo * Output Pointer to vertical GMV values per row.

Note:

 When mvSADflag is disabled the mvSADpointer points to NULL.

 In current implementation we are not populating MBinfo and
MBRowinfo structures. Currrently, mbComplexity and
gmvPointerVert pointers points to NULL.

 When the scenechange is detected at low resolution encoder, IDR
frame is forced at high resolution encoder at the corresponding frame
number.

API Reference

4-55

4.5 H.264 Encoder Low latency specific Data Structures and Enumerations

This section includes the following H.264 Encoder Low Latency specific
structures, constant, typedefs and enumerations:

 IH264VENC_TI_DataSyncDesc.

 IH264VENC_TI_MAXNUMBLOCKS

 IH264VENC_TI_DataSyncHandle

 IH264VENC_TI_DataSyncPutGetFxn

 IH264VENC_TI_DataMode

 IH264VENC_TI_SliceFormat enumeration.

4.5.1 Structures

4.5.1.1 IH264VENC_TI_DataSyncDesc

║ Description

This structure is a descriptor for the chunk of data being transferred via
callback for producing the encoded data at NAL level

║ Fields

Field Data type Input/
Output

Description

Size XDAS_Int32 Input Size of this structure.

numBlocks XDAS_Int32 Input Number of blocks provided for writing the
encoded NAL. Valid values are between 1 to
IH264VENC_TI_MAX_NUMBLOCKS

varBlockSizesFla
g

XDAS_Int32 Input Flag indicating whether any of the data blocks
vary in size. Valid values are XDAS_TRUE
and XDAS_FALSE.
Current supported value is XDAS_FALSE.

baseAddr XDAS_Int32 * Input Array of pointers to the first byte of all
(numBlocks) blocks provided for writing the
encoded slice.

blockSizes XDAS_Int32* Inout This array contains the sizes of each valid
blocks

API Reference

4-56

4.5.2 Constant

4.5.2.1 IH264VENC_TI_MAXNUMBLOCKS

║ Description

This MACRO defines max value of numBlocks accepted by encoder when
operated in IH264VNC_TI_SLICEMODE outputData mode

4.5.3 Typdef

4.5.3.1 IH264VENC_TI_DataSyncHandle

║ Description

This typedefs is handle that identifies DataSync FIFO. Fields

Field Data type Input/
Output

Description

IH264VENC_TI_Dat
aSyncHandle

Void * Input This handle is provided by the application to
handle DataSync Fifo. Encoder passes this
handle back to application when providing
output data via callback

4.5.3.2 IH264VENC_TI_DataSyncPutGetFxn

Typedef to pointer to callback module used by encoder to signal "data
ready" to consumer and to get the space for next set of data. Consumer
need to define this API. Returns the successor failure status. Valid return
value is XDM_EOK or XDM_EFAIL.

║ Name

IH264VENC_TI_DataSyncPutGetFxn.
║ Synopsis

typedef XDAS_Int32 (*
IH264VENC_TI_DataSyncPutGetFxn)(IH264VENC_TI_DataSyncHandl
e dataSyncHandle, IH264VENC_TI_DataSyncDesc dataSyncDesc);

║ Arguments

IH264VENC_TI_DataSyncHandle dataSyncHandle /* Handle of
dataSync provided by application */

║ Arguments

IH264VENC_TI_DataSyncDesc *dataSyncDesc /*
dataSyncDescriptor containing encoded slice to be provided
to application */

║ Return Value

API Reference

4-57

XDAS_Int32 /* Return Status – XDM_EOK/XDM_EFAIL */

4.5.4 Enum

4.5.4.1 IH264VENC_TI_DataMode

║ Description

This enumeration is used to specify codec when to provide encoded data –
after entire frame encoding or after slice encoding.

║ Fields

Enumeration Class Symbolic Constant Name Description

IH264VENC_TI_SLICEMODE provide encoded data after one slice is
encoded

IH264VENC_TI_DataMod
e

IH264VENC_TI_ENTIREFRA
ME

provide encoded data after entire frame
is encoded

4.5.4.2 H264VENC_TI_SliceFormat

║ Description

Describes the output slice format of encoder. This enumeration type is
used to specify codec encode stream format type .

║ Fields

Enumeration Class Symbolic Constant Name Description

IH264VENC_TI_NALSTREAM Output data in NAL stream format IH264VENC_TI_DataMod
e

IH264VENC_TI_BYTESTREA
M

Output data in BYTE stream format

API Reference

4-58

Notes:

 If the outBuf is cacahed, then the application needs to take care of
cacahe invalidating the data before doing any read/write operation. This
is because the input/output data is always read through DMA and not
CPU.

Example Usage:

 Configuring encoder

Assume slice size as 2MB row. Set encoder with below parameters:

 IH264VENC_Params->sliceMode = 3
 IH264VENC_Params->outputDataMode = 0
IH264VENC_Params->sliceFormat = 1
 (assuming byte stream encoding)

 IH264VENC_DynamicParams->sliceSize = 2
IH264VENC_InArgs->numOutputDataUnits = 1

This will enable encoder to produce slice of 2MB row and the Low
latency call back API will get called after 1 slice encode for data
exchange.

 Syncronization and Data Exchange

If the encoder is run in the above mode, the application will see the call
back function getting invoked after 1 slice encode. Application can use this
call back API for synchronization as well as data exchange. If the next
2MB row of data is put into DDR by capture driver, application can give the
next output slice pointer to the codec and release the call back. This will
make encoder proceed with further encoding. Please note that we use
output slice buffer pointer of encoded bitstream rather than input YUV to
control the encoder. The input YUV pointer is give at the start of process
call only as in the normal encoding.

API Reference

4-59

4.6 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the H.264 Encoder. The APIs are logically grouped into the following
categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(),algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process ()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),
algDeactivate(), and algFree() are standard XDAIS APIs. This
document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(SPRU360).

API Reference

4-60

4.6.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algNumAlloc(Void);
║ Arguments

Void
║ Return Value

XDAS_Int32; /* number of buffers required */
║ Description

algNumAlloc() returns the number of buffers that the algAlloc()
method requires. This operation allows you to allocate sufficient space to
call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

API Reference

4-61

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm
requires

║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns
**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32 /* number of buffers required */
║ Description

algAlloc() returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.
algAlloc() may return a pointer to its parent IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers
returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algNumAlloc(), algFree()

API Reference

4-62

4.6.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params structure (see Data
Structures section for details).

║ Name

algInit() – initialize an algorithm instance
║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec
memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

algInit() performs all initialization necessary to complete the run-time
creation of an algorithm instance object. After a successful return from
algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This
value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

API Reference

4-63

4.6.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters
are defined in the DynamicParams data structure (see Data Structures
section for details).

║ Name

control() – change run-time parameters and query the status
║ Synopsis

XDAS_Int32 (*control) (IVIDENC1_Handle handle,
IVIDENC1_Cmd id, IVIDENC1_DynamicParams *params,
IVIDENC1_Status *status);

║ Arguments

IVIDENC1_Handle handle; /* algorithm instance handle */

IVIDENC1_Cmd id; /* algorithm specific control commands*/

IVIDENC1_DynamicParams *params /* algorithm run-time
parameters */

IVIDENC1_Status *status /* algorithm instance status
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

This function changes the run-time parameters of an algorithm instance
and queries the algorithm’s status. control() must only be called after a
successful call to algInit() and must never be called after a call to
algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IVIDENC1_DynamicParams and IVIDENC1_Status data structures
respectively.

API Reference

4-64

Note:

The control API can be called with base or extended DynamicParams,
and Status data structure. If you are using extended data structures,
the third and fourth arguments must be pointers to the extended
DynamicParams and Status data structures respectively. Also, ensure
that the size field is set to the size of the extended data structure.
Depending on the value set for the size field, the algorithm uses either
basic or extended parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 control() can only be called after a successful return from
algInit() and algActivate().

 handle must be a valid handle for the algorithm’s instance object.
║ Post conditions

The following conditions are true immediately after returning from this
function.

 If the control operation is successful, the return value from this
operation is equal to IALG_EOK; otherwise it is equal to either
IALG_EFAIL or an algorithm specific return value.

 If the control command is not recognized, the return value from this
operation is not equal to IALG_EOK.

║ Example

See test application file, h264encoderapp.c available in the \client\test\src
sub-directory.

║ See Also

algInit(), algActivate(), process()

API Reference

4-65

4.6.4 Data Processing API

Data processing API is used for processing the input data.
║ Name

algActivate() – initialize scratch memory buffers prior to processing.
║ Synopsis

Void algActivate(IALG_Handle handle);
║ Arguments

IALG_Handle handle; /* algorithm instance handle */
║ Return Value

Void
║ Description

algActivate() initializes any of the instance scratch buffers using the
persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance
handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm processing methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

API Reference

4-66

║ Name

process() – basic encoding/decoding call
║ Synopsis

XDAS_Int32 (*process)(IVIDENC1_Handle handle,
IVIDEO1_BufDescIn *inBufs, XDM_BufDesc *outBufs,
IVIDENC1_InArgs *inargs, IVIDENC1_OutArgs *outargs);

║ Arguments

IVIDENC1_Handle handle; /* algorithm instance handle */

IVIDEO1_BufDescIn *inBufs; /* algorithm input buffer
descriptor */

XDM_BufDesc *outBufs; /* algorithm output buffer descriptor
*/

IVIDENC1_InArgs *inargs /* algorithm runtime input arguments
*/

IVIDENC1_OutArgs *outargs /* algorithm runtime output
arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */
║ Description

A call to function initiates the encoding/decoding process for the current
frame.

The first argument to process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM_BufDesc data structure
for details). Input/output buffers should be allocated in non-cacheable /non-
bufferable region if low latency is enabled.

The fourth argument is a pointer to the IVIDENC1_InArgs data structure
that defines the run-time input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDENC1_OutArgs data structure
that defines the run-time output arguments for an algorithm instance object.

In case of interlaced content, process call has to be invoked for each field.

Note:

The process() API can be called with base or extended InArgs and
OutArgs data structures. If you are using extended data structures, the
fourth and fifth arguments must be pointers to the extended InArgs and
OutArgs data structures respectively. Also, ensure that the size field is
set to the size of the extended data structure. Depending on the value
set for the size field, the algorithm uses either basic or extended
parameters.

║ Preconditions

API Reference

4-67

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 process() can only be called after a successful return from
algInit() and algActivate().

 handle must be a valid handle for the algorithm’s instance object.

 Buffer descriptor for input and output buffers must be valid.

 Input buffers must have valid input data.
║ Post conditions

The following conditions are true immediately after returning from this
function.

If the process operation is successful, the return value from this operation
is equal to IALG_EOK; otherwise it is equal to either IALG_EFAIL or an
algorithm specific return value.

║ Example

See test application file, h264encoderapp.c available in the \client\test\src
sub-directory.

║ See Also

algInit(), algDeactivate(), control()

Note:

 A video encoder or decoder cannot be pre-empted by any other
video encoder or decoder instance. That is, you cannot perform task
switching while encode/decode of a particular frame is in progress.
Pre-emption can happen only at frame boundaries and after
algDeactivate() is called.

 The input data is YUV 4:2:0 SP. The encoder output is H.264
encoded bit stream.

API Reference

4-68

║ Name

algDeactivate() – save all persistent data to non-scratch memory
║ Synopsis

Void algDeactivate(IALG_Handle handle);
║ Arguments

IALG_Handle handle; /* algorithm instance handle */
║ Return Value

Void
║ Description

algDeactivate() saves any persistent information to non-scratch buffers
using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm
instance handle. This handle is used by the algorithm to identify various
buffers that must be saved prior to next cycle of algActivate() and
processing.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algActivate()

4.6.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

API Reference

4-69

║ Name

algFree() – determine the addresses of all memory buffers used by the
algorithm

║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec
memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */
║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */
║ Description

algFree() determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.
The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

Note:

In the current implementation, algFree() API additionally resets
HDVICP hardware co-processor and also releases DMA resources held
by it. Thus, it is important that this function is used only to release the
resource at the end and not in between process()/control() API
functions.

API Reference

4-70

This page is intentionally left blank

A-1

Appendix A

Time-Stamp Insertion

The DM365/DM368 H.264 Encoder supports insertion of frame time-stamp
through the Supplemental Enhancement Information (SEI) Picture Timing
message. The time-stamp is useful for audio-synchronization and
determining the exact timing for display of frames. The parameters coded
in the SEI Picture Timing Message are also useful for testing HRD
compliance.

The application should take proper care while setting the parameters for
time-stamp and the actual time-stamp for each frame. Ideally, the time-
stamp can be set based on the frame-rate. This simplifies the process of
generating time-stamps. However, the application is free to use any
method of time-stamp generation.

Time-stamp based on frame-rate can be generated as follows.

Let f be the frame-rate of the sequence. Assuming a constant frame-rate
sequence, set

TimeScale = k * f

NumUnitsinTicks = n

where k is an integer such that (k * f) and (k/n) are
integers

units_per_frame = k/n

For the first frame, set the TimeStamp parameter in inArgs structure to 0.
For the subsequent frames, increment the TimeStamp by
units_per_frame

Example 1.

f = 30.

Let k = 2

TimeScale = 2 * 30 = 60

NumUnitInTicks = 1

units_per_frame = 2

TimeStamp = 0, 2, 4, 6, 8…

Time-Stamp Insertion

A-2

Example 2.

f = 25

k = 2

TimeScale = 2 * 25 = 50

NumUnitsInTicks = 2

units_per_frame = 1

TimeStamp = 0, 1, 2, 3, 4…

Example 3.

f = 15

k = 1000

TimeScale = 1000 * 15 = 15000

NumUnitsInTicks = 1000

units_per_frame = 1

TimeStamp = 0, 1, 2, 3, 4…

Example 4.

f = 0.5

k = 200

TimeScale = 200 * 0.5 = 100

NumUnitsinTicks = 100

units_per_frame = 2

TimeStamp = 0, 2, 4, 6, 8

B-1

Appendix B

Error Description

Encoder_Create() returns FATAL_ERROR for out of range/invalid input
parameter values. Also, the unsupported features usage in the profiles will
also result in FATAL_ERROR. List of unsupported features with respect to
the profile is listed in the following table.

ProfileIDC Profile Inputparam values that results in
FATAL ERROR

66 Baseline inputContentType =1
transform8x8FlagIntraFrame=1
transform8x8FlagInterFrame=1
seqScalingFlag=1
entropyMode=1

77 Main transform8x8FlagIntraFrame=1
transform8x8FlagInterFrame=1
seqScalingFlag=1

100 High -

In addition to this, if any other input parameter is beyond the range
specified in the user guide, it will result in codec create or control API
failure.

Error Description

B-2

This page is intentionally left blank

C-1

Appendix C

VICP Buffer Usage By Codec

H.264 codec uses VICP buffers for its internal encode/decode operation.
This buffer is accessed using EDMA. This section describes in brief how
the buffers are used.

The Framework component (FC) manages the VCIP buffers using VCIP
resource manager. In context of DM365/DM368, VICP buffers can be used
by following algorithms:

 MPEG4 and JPEG running on MJCP

 H.264 codec running on HDVICP

 Preprocessing algorithms or noise filter running on IMX/NSF

Any of these algorithms can place its request to VICP buffers. FC services
the VICP buffer request in a sequential manner.

VICP Buffer Usage By Codec

C-2

Figure C-1. VICP Buffers Managed By FC.

The above diagram shows the buffers of VICP managed by FC. The memories
shaded in green are managed by FC. The memories in red are reserved for MJCP
only.

FC gives the VICP memory to the algorithm from the start of the pool. Hence, it is the
application’s responsibility to instantiate the various algorithms in a way that an
efficient usage of VICP buffers is achieved.

The amount of VICP buffer usage by the codec is part of datasheet
provided in the release

D-1

Appendix D

ARM926 TCM Buffer Usage By Codec

H.264 encoder uses ARM926 TCM buffers for its internal encode
operation. This buffer is accessed using EDMA. This section briefly
describes the buffer usage.

The ARM926 processor provides a complete high performance sub-
system, which includes separate instruction, data, tightly-coupled
memories (TCMs) and internal RAM interfaces. Instruction and data
access is differentiated by accessing different memory map regions, with
the instruction region from 0x0000 through 0x7FFF and data from 0x10000
through 0x17FFF.

In context of DM365/DM368, ARM926 DTCM can be used for the
following:

 ARM926 for system level usage

 H.264 codec running on HDVICP

The reason for H.264 codec running in HDVICP to use ARM926 TCM:

As seen in Appendix C, H.264 codec uses part of VICP buffers for its
execution. However, when this codec is run along with an application that
requires more VICP buffers (like MPEG4 and JPEG running on MJCP),
then algorithm cannot use the VICP buffers originally used by it. Therefore,
some of the buffers used in VICP will be transferred to ARM926 TCM. The
ARM926 TCM buffers are managed by Framework component (FC) using
ARM TCM resource manager.

The user can indicate his choice of using ARM926 TCM by suitably setting
the create time parameter useARM926Tcm in config file.

Setting the useARM926Tcm to

 0 - Do not use ARM926 TCM

 1 - Use ARM926 TCM. This is supported for widths up to maxWidth of
1280.

The amount of ARM926 TCM buffer usage by the codec is a part of
datasheet provided in the release.

The ARM926TCM memory in Linux is managed though CMEM pools,
Hence, the below pool allocation needs to be appended when
ARM926TCM is used.

 allowOverlap=1 phys_start_1=0x00001000
phys_end_1=0x00008000 pools_1=1x28672

ARM926 TCM Buffer Usage By Codec

D-2

This page is intentionally left blank

E-1

Appendix E

Simple Two-pass Encoding Sample
Usage

Multi-pass encoding can be used to improve the quality of the H264 encoded
video. This version of H264 encoder on DM365/DM368 supports simple two
pass (STP) encoder. In STP encoder, two encoders run sequentially for every
frame captured, first the low-resolution encoder and then the high-resolution
encoder.

The low-resolution encoder accumulates the frame specific information
(metadata) in the structure described in the Section 4.4. After completion of
low pass encoding, metadata is passed to the high-resolution encoder. The
high-resolution encoder uses metadata appropriately to improve the quality of
the encoded video

Various example cases of simple two encoding are given below:

1) Case-1: If both encoder runs at same frame rate and no frame skip
occurs; generation and consumption of the frame level information
(metadata) happens for each frame.

2) Case-2: If there is a frame skip at low-resolution encoder; no
information is passed to high-resolution encoder for the corresponding
frame.

3) Case-3: If there is a frame skip at high-resolution encoder, the frame
level information is retained and is consumed at next frame. (For
example, if SceneChange occurs at Nth frame and it is frame skip, then
the IDR frame is inserted at high-resolution at (N+1)th frame.) This way
information is preserved and utilized at high-resolution encoder.

4) Case-4: If the low-resolution encoder is running at low frame rate and
high resolution encoder is running at high frame rate, the metadata is
consumed by the corresponding frame at high-resolution encoder. If
the corresponding frame is frame skip then metadata is used by
subsequent frame. This process continues if the frame skip persist and
the metadata is pass to next frame until the new metadata is received
from low-resolution encoder.

5) Case-5: If the low-resolution encoder is running at high frame rate and
high-resolution encoder is running at low frame rate, the metadata
information is retained inside the low-resolution codec until encoding at
high reolution encoder starts and used accordingly at the high-
resolution encoder.
.

Simple Two-pass Encoding Sample Usage

E-2

Case-1

Case-2

Case-3

Case-4

Frame Skip

Simple Two-pass Encoding Sample Usage

E-3

Note:

Call control() function with the XDM_SETPARAMS command before
starting encoding at low-resolution and high resolution instance for every
frame (See section 3.1.3).

The following steps explains how to use STP feature of the DM365/DM368
based H264 encoder.

1) Set metaDataGenerateConsume flag value for low and high-resolution
encoder to 1 and 2 respectively. If meteDataGenerateConsume is set
to 0, no metaData is generated or consumed.

2) Request I/O buffers for two encoder instances as explained in the
Chapter 3. In case of STP extra buffers are requested to store
metadata. This is taken care inside the codec if the
metaDataGenerateConsume flag is set appropriately.

3) After creating instances of both the encoders, initiate coding of low-
resolution encoder.

4) Update metadata values in frame_info structure at low-resolution
encoder. Once encoding operation is completed, copy the metadata
into the output buffers of low-resolution encoder requested in the step
2.

5) If the frame skip occurs at low resolution, no metadata information is
passed to the high-resolution encoder.

6) Now set the value of metaDataGenerateConsume flag for low-
resolution encoder instance to 3, which means the metadata is
generated but not yet consumed.

7) Before starting high resolution encoding, if
metaDataGenerateConsume flag for low-resolution encoder instance
is 3, copy metadata information from the output buffers of low-
resolution encoder to the input buffer of the high-resolution encoder
requested in the step 2. The metadata information from this input
buffers is utilized appropriately by the codec at high-resolution
encoder.

8) If the frame skip occurs at high-resolution encoder, metadata
information will used by next frame appropriately.

Case-5

Simple Two-pass Encoding Sample Usage

E-4

9) Once the metadata is consumed and encoding is completed at high
resolution encoder, set the value of metaDataGenerateConsume flag
for low-resolution encoder instance to 1.

E.1 Example Usage:

In order to provide flexibility to generate/consume metaData information an
extended dynamic parameter metaDataGenerateConsume is provided.
Initially, it can take only three values: 0 (no metaData generated or
consumed), 1 (Generate metaData) and 2 (Consume metaData). In case of
low resolution encoder, we will set metaDataGenerateConsume to 1 and in
case of high resolution encoder metaDataGenerateConsume is set to 2.

Example settings for low resolution encoder

In this case, the application requests for buffers which are used to pass frame
level information from low resolution encoder to the high resolution encoder.

Set meetaDataGenerateConsume = 1

// generate metadata in low resolution encoder.

Output Buffer requirement by low resolution encoder

Structure Name Buffer Size

FrameInfo_Interface sizeof(FrameInfo_Interface);

MBInfo (uiSize >> 4) * 4;

MBRowInfo uiExtHeight * 4;

Where uiSize is the maximum number of pixels in a frame and
uiExtHeight is the height of the frame in pixels.

Addresses of these buffers are passed to the codec where variables of the
structures (See Section 4.6) are updated if metaDataGenerateConsume is
set to 1. Once the encoding is completed, set the value of
metaDataGenerateConsume flag for low-resolution instance to 3.

In current implementation, MBinfo and MBRowinfo structures are not
populated, hence no buffers are requested.

E.1.1 Example settings for high resolution encoder

In this case, the application copies the metadata information from the buffers
of low-resolution encoder to the buffers of high-resolution encoder. The high
resolution encoder makes use of frame level information as and when it is
required.

At application:

**

If(metaDataGenerateConsume of low resolution is 3)

{

If(metaDataGenerateConsume of high resolution is 2)

Simple Two-pass Encoding Sample Usage

E-5

 Copy metadata from low-resolution to high
resolution;

}

**

Input Buffer requirement by high resolution encoder

Structure Name Buffer Size

FrameInfo_Interface sizeof(FrameInfo_Interface);

Inside Codec:

**

If(metaDataGenerateConsume of high resolution is 2) /*
Will be used in High resolution encoder */

{

 /*

 * Use metadata given by low resolution encoder to

 * take appropriate decisions.

 */

}

**

Once the information is consumed and encoding of high-resolution encoder
is done, set the value of metaDataGenerateConsume flag of low
resolution encoder instance to 1.

At application:

**

Set metaDataGenerateConsume flag of low resolution encoder
to 1;

**

Note:
 When setting dynamicparams.metaDataGenerateConsume = 2, for

the high resolution encoder, the low resolution encoder must be run with
dynamic params.metaDataGenerateConsume = 1, else severe
quality degradation will occur.

 The usage of the generated metaData by the high resolution encoder is
internal to the codec and no further input is required from the end user.

 If the current frame at low resolution encoder is encoded as IDR/I frame
then no scene change information is passed to high resolution encoder.

 STP works with ROI enabled also.
 When the scenechange is detected at low resolution encoder, IDR frame is

forced at high resolution encoder at the corresponding frame number.

Simple Two-pass Encoding Sample Usage

E-6

This page is intentionally left blank

G-1

Appendix F

Revision History

This revision history highlights the changes made to the SPRUEU9A codec
specific user guide to make it SPRUEU9B.

Table F-1.Revision History for H.264 Base/Main/High Profile Encoder on DM365/DM368
Section Changes

Global There are no major changes in the user guide for this release of
H.264 Base/Main/High Profile Encoder on DM365/DM368.

	H.264 Base/Main/High ProfileEncoder on DM365/DM368
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Software Architecture
	1.2 Overview of XDAIS, XDM, and Framework Component Tools
	1.2.1 XDAIS Overview
	1.2.2 XDM Overview
	1.2.3 Framework Component

	1.3 Overview of H.264 Base/Main/High Profile Encoder
	1.4 Supported Services and Features
	1.5 Comparison between version 01.10.00.xx with new version 02.00.00.xx (Platinum Encoder)

	Installation Overview
	2.1 System Requirements for Linux
	2.1.1 Hardware
	2.1.2 Software

	2.2 Installing the Component for Linux
	2.3 Building and Running the Sample Test Application on Linux
	2.4 Configuration Files
	2.4.1 Generic Configuration File
	2.4.2 Encoder Configuration File
	2.4.3 Encoder Sample Base Param Setting

	2.5 Standards Conformance and User-Defined Inputs
	2.6 Uninstalling the Component

	Sample Usage
	3.1 Overview of the Test Application
	3.1.1 Parameter Setup
	3.1.2 Algorithm Instance Creation and Initialization
	3.1.3 Process Call
	3.1.4 Algorithm Instance Deletion

	3.2 Handshaking Between Application and Algorithm
	3.2.1 Resource Level Interaction
	3.2.2 Handshaking Between Application and Algorithms

	3.3 Cache Management by Application
	3.3.1 Cache Usage By Codec Algorithm
	3.3.2 Cache and Memory Related Call Back Functions for Linux

	3.4 Sample Test Application

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.1.1 Common XDM Symbolic Constants and Enumerated Data Types
	4.1.2 H264 Encoder Symbolic Constants and Enumerated Data Types
	4.1.3 H264 Encoder Error code Enumerated Data Types

	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.2 H.264 Encoder Data Structures

	4.3 H.264 Encoder ROI specific Data Structures and Enumerations
	4.4 H264 Encoder Two Pass Encoder data structure
	4.5 H.264 Encoder Low latency specific Data Structures and Enumerations
	4.5.1 Structures
	4.5.2 Constant
	4.5.3 Typdef
	4.5.4 Enum

	4.6 Interface Functions
	4.6.1 Creation APIs
	4.6.2 Initialization API
	4.6.3 Control API
	4.6.4 Data Processing API
	4.6.5 Termination API

	Time-Stamp Insertion
	Error Description
	VICP Buffer Usage By Codec
	ARM926 TCM Buffer Usage By Codec
	Simple Two-pass Encoding Sample Usage
	E.1 Example Usage:

	Revision History

